1)
С₆² = 6!/(2!*4!) = 6*5/2 = 15 сп. для выбора 2 мальчиков из 6
С₇² = 7!/(2!*(7-2)! ) = 7*6*5!/ (2*5!) = 7*3 = 21 сп. для выбора 2 девочек из 7
Так как выбор данной команды осуществляется двумя последовательными действиями выбора девочек и мальчиков, то:
С₆² *С выбрать 2 мальчиков и 2 девочек
2)
С₆³ = 6!/(3!*(6-3)!) = 6*5*4*3!/2*3*3! = 20 сп. выбрать 3 мальчиков из 6
С₇¹ = 7 сп. выбрать 1 девочку из 7
С₆³ * С выбрать 3 мальчика и 1 девочку
3)
С выбрать 4 мальчиков из 6
4) Так как осуществляется один из вариантов гендерного состава команды (2 и 2, или 3 и 1, или 4), то все которыми могут осуществляться эти варианты, складываются:
выбрать команду из 4 человек , в которую входит хотя бы 2 мальчика.
ответ
Объяснение:
1)
С₆² = 6!/(2!*4!) = 6*5/2 = 15 сп. для выбора 2 мальчиков из 6
С₇² = 7!/(2!*(7-2)! ) = 7*6*5!/ (2*5!) = 7*3 = 21 сп. для выбора 2 девочек из 7
Так как выбор данной команды осуществляется двумя последовательными действиями выбора девочек и мальчиков, то:
С₆² *С выбрать 2 мальчиков и 2 девочек
2)
С₆³ = 6!/(3!*(6-3)!) = 6*5*4*3!/2*3*3! = 20 сп. выбрать 3 мальчиков из 6
С₇¹ = 7 сп. выбрать 1 девочку из 7
С₆³ * С выбрать 3 мальчика и 1 девочку
3)
С выбрать 4 мальчиков из 6
4) Так как осуществляется один из вариантов гендерного состава команды (2 и 2, или 3 и 1, или 4), то все которыми могут осуществляться эти варианты, складываются:
выбрать команду из 4 человек , в которую входит хотя бы 2 мальчика.
ответ
Объяснение:
y' = 4 - 4/cos²x.
Находим критические точки (для полноты необходимо было бы также исследовать точки разрыва производной, но они не входят в промежуток [-π/4; π/4], потому можно не рассматривать):
у' = 0,
4 - 4/cos²x = 0
cos²x = 1,
cosx = ±1,
x = πn, n ∈ ℤ.
Нас интересует промежуток [-π/4; π/4], потому критическая точка - 0.
у' = 4 - 4/cos²x принимает неположительные значения при любом х. Значит на промежутке [-π/4; π/4] функция у = 4х - 4tgx + π - 9 убывает. Значит наибольшее значение она будет принимать при -π/4. Это значение равно у max. = y(-π/4) = -5.