Первый рабочий за 3 дня сделал x деталей, по x/3 в день.
Второй рабочий за 4 дня сделал (x+22) деталей, по (x+22)/4 в день.
Первый работал 8 дней, второй работал 11 дней. Вдвоем они сделали
8x/3 + 11(x+22)/4 = 678 деталей.
Умножаем все на 12
32x + 33(x+22) = 678*12
65x + 121*6 = 678*2*6
65x = 6*(1356 - 121) = 6*1235
x=6*1235/65=6*19=114 деталей сделал 1 рабочий за 3 дня, по 38 в день.
x + 22 = 114 + 22 = 136 деталей сделал 2 рабочий за 4 дня, по 34 в день.
ответ: 1 - 38 в день, 304 за 8 дней, 2 - 34 в день, 374 за 11 дней.
1) cos(sin(x) )
Заметим что : -π/2<-1<=sinx<=1<π/2
sin x лежит внутри интервала [-π/2 ;π/2]
Вывод:
тк сos(x)-четная функция,то на этом промежутке косинус принимает положительное значение : cos(sin(x) )>0 (0 не может быть тк |sin(x)|<π/2)
2) sin( 2+cos(x) )
-1<=cos(x)<=1
0<1<=2+cos(x)<=3<π
sin( 2+cos(x) ) лежит внутри промежутка [0;π]
Тк sin(π-x)=x , то это равносильно : [0;π/2]
Таким образом: sin( 2+cos(x) )>0 ( 0 не может быть 0<2+cosx<π)
3) сos(π+arcsin(x))
Из формулы приведения:
cos(π+arcsin(x))=-cos(arcsin(x) )
Заметим что область значений arcsin x ограничена:
arcsin(x)∈[-π/2;π/2]
Тогда по тем же рассуждениям что и в 1)
сos(arcsin(x))>=0 (исключением является то что здесь возможно равенство нулю ,тк arcsin(x)=+-π/2 (x=+-1) cos(+-π/2)=0 )
-сos(arcsin(x))<=0 → cos(π+arcsin(x))<=0
Находим x(вершину)
Это наши вершины.
Построили.
a)
б)
в)
г)Возрастает: [-2;+∞)
Убывает:(-∞;-2]
д) y>0 при x (-∞;-5) и (1;+∞)
y<0 при (-5;1)