М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
winchester24
winchester24
30.11.2021 09:50 •  Алгебра

Представьте в виде многочлена (2m-3n) в кубе

👇
Ответ:
manjester1
manjester1
30.11.2021
(2m-3n)^3 = (2m-3n)^2*(2m-3n)=
= (4m^2-12mn+9n^2)(2m-3n)=
= 8m^3-24m^2n+18mn^2-12m^2n+36mn^2-27n^3=
= 8m^3-36m^2n+54mn^2-27n^3

по формуле разность куба
(2m-3n)^3 = (2m)^3 - 3*(2m)^2*3n + 3 *2m*(3n)^2 - (3n)^3 =
= 8m^3 - 36*m^2n + 54mn^2 - 27n^3
4,7(93 оценок)
Ответ:
Жибек20041
Жибек20041
30.11.2021
Формула куба разности:
(a-b)^3=a^3-3*a^2*b+3*b^2*a-b^3

(2m-3n)^3=(2m)^3-3(2m)^2*3n+3(3n)^22m-(3n)^3=
=8m^3-36m^2n+54mn^2-27n^3
4,5(51 оценок)
Открыть все ответы
Ответ:
Робобот1
Робобот1
30.11.2021

4x2−3x+1=0 ;

a=4 ;

b=−3 ;

c=1 .

 

Корни квадратного уравнения вычисляют по формулам:

 x1   =   −b+D−−√2⋅a ;      x2   =   −b−D−−√2⋅a ,  где  D=   b2−4ac .

 

D  называется дискриминантом.

 

По значению дискриминанта можно определить количество корней квадратного уравнения.

Если  D<0  (отрицательный), то у уравнения нет действительных корней.

Если  D=0 , то у уравнения два равных корня.

Если  D>0  (положительный), то у уравнения два различных корня.

 

Приведённое квадратное уравнение (коэффициент при  x2  равен  1 , т. е.  а=1 )

x2+bx+c=0  можно решить с теоремы Виета:  {x1⋅x2=cx1+x2=−b  

   

Неполные квадратные уравнения

Неполные квадратные уравнения имеют  2  вида:

1. если  c=0 , то  ax2+bx=0 ;

 

2. если  b=0 , то  ax2+c=0 .

 

Неполные квадратные уравнения можно решать с формул дискриминанта, но рациональнее выбрать специальные

 

1.  ax2+bx=0  можно решить, разложив на множители (вынести за скобку  x )

 x⋅(ax+b)=0 .

 x=0   или  ax+b=0 .     Значит, один корень равен  0 , а второй корень  x=−ba  

(т. к. произведение двух чисел равно  0  только тогда, когда хотя бы один из множителей равен  0 ).  

 

2x2−30x=0;x(2x−30)=0;x=0,или2x−30=0;2x=30;x=15.  

ответ:  x=0 ;   x=15 .

 

2.  ax2+c=0  можно решить, извлекая корень из каждой части уравнения.

ax2=−c ; (обе стороны делятся на  a )  x2=−ca .

 |x|=   −ca−−−√ .   Извлекая корень из правой части уравнения, получаем  x  по модулю.

Это значит, что

x1   =   −ca−−−√ ;

x2   =   −−ca−−−√ .

 

4x2−100=0;4x2=100∣∣:4x2=25;|x|=25−−√;  

из этого следует, что  x=5  или  x=−5 .

 

ответ:  x1=5 ;    x2=−5 .

 

x2+36=0;x2=−36.  

У уравнения нет решения, т. к. квадратный корень из отрицательного числа не имеет смысла (также известно, что число во второй степени не может быть отрицательным).

 

ответ: корней нет.

4,6(29 оценок)
Ответ:
мик104
мик104
30.11.2021
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\&#10;d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\&#10;0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\&#10;0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\&#10;0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\&#10;0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк
4,7(68 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ