Пусть первая бригада, работая одна, выполняет работу за x часов; тогда второй бригаде на выполнение всей работы потребуется (x+10) часов.
Соотвественно, производительность труда первой бригады равна (1/x) (1/час), второй бригады — (1/(x+10)) (1/час).
За 12 часов обе бригады, работая совместно, выполнят всю работу (т. е. 1). Получаем уравнение:
12*(1/x + 1/(x+10)) = 1.
Умножаем левую и правую части на x(x+10):
12(x+10) + 12x = x(x+10);
x² + 10x − 24x − 120 = 0;
x² − 14x − 120 = 0.
Выбираем положительное значение x:
x = 7 + √(49+120) = 20.
Значит, первой бригаде для выполнения всей работы потребуется 20 часов, а второй бригаде — 20+10=30 часа.
Проверяем: 12*(1/20+1/30) = 12*(5/60) = 1 (Ok).
ОТВЕТ: первой бригаде для выполнения этой работы потребовалось бы 20 часов.
1) ОДЗ: 3 - x ≥ 0 ⇒ x ≤ 3
3-x > 1
-x > - 2
x < 2
ответ: ( - ∞; 2)
2) ОДЗ: ( - ∞; (1-√5) / 2 ] v [ (1+√5) / 2 ; + ∞ )
x² - x -1 ≤ 1
(x+1)(x-2) ≤ 0
Произведение меньше нуля тогда и только тогда, когда оба множителя разных знаков, то есть надо рассмотреть два случая и их объединить:
I случай: x ≤ -1 и x ≥ 2 - решений нет
II случай: x ≥ -1 и x ≤ 2 ⇔ x ∈ [-1; 2]
2 > (1+√5) /2 и -1 < (1-√5) / 2
Тогда с учетом ОДЗ записываем ответ:
ответ: [-1; (1-√5) / 2] v [(1+√5) / 2; 2]
3) ОДЗ: x ∈ ( - ∞; -3] v [3; + ∞ )
(2x-3)² < 4(x²-9)
(2x-3)² - 4(x-3)(x+3) < 0
4x²-12x + 9 - 4x² + 36 < 0
-12x + 45 < 0
x > 3,75
С учетом ОДЗ записываем ответ:
x ∈ ( - ∞; -3 ] v [3,75; + ∞)
2)7a^7(a³-5)-2a(a³-5)=(a³-5)(7a^7-2a)=a(a³-5)(a^6-2)