Медианы треугольника пересекаются в одной точке, и точкой пересечения делятся в отношении 2:1, считая от вершины.
⇒ ВМ:МК=2:1.
У ΔАМК и ΔАВМ одна и та же высота АН - перпендикуляр, проведенный из вершины А к прямой ВК, содержащей стороны ВМ и МК этих треугольников.
Если два треугольника имеют одинаковые высоты, то отношение их площадей равно отношению длин оснований (сторон, на которые опущены эти высоты) ⇒
Samk/Sabm=1/2 ⇒
11/Sabm=1/2 =>
22=Sabm.
Sabk=22см²+11см²=33см²
медиана ВК делит ΔАВС на два равновеликих т.е Sabk = Skbc.
⇒
Sabc=33*2=66см². Это ответ.
ОДЗ задачи
Длины сторон должны быть больше нуля
{a-3>0
{(a/2) +5 >0
или
{ a >3
{ a > -10
Поэтому система имеет решение для всех значений
а принадлежащих (3;+бесконеч)
Треугольник можно составить если сумма длин любых двух сторон больше длины третьей стороны.
Составим неравенства
1 + a - 3 > (a/2) + 5
a - a/2 >5+2
a/2 >7
a >14
Проверим два других случая
1 + a/2 +5 > a -3
a/2 < 9
a < 18
а - 3 + a/2+5 >1
(3/2)a >-1
a > -2/3
Решение трех неравенств возможно для всех значений
а принадлежащих (14;18)
Решение неравенства находятся в ОДЗ
ответ:(14;18)