6x² + 6/x² + 5x + 5/x - 38 = 0
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
x ≠ 0
замена
1/x + x = t
(1/x + x)² = t²
1/x² + 2*1/x * x + x² = t²
1/x² + 2 + x² = t²
1/x² + x² = t² - 2
6(x² + 1/x²) + 5(1/x + x) - 38 = 0
6(t² - 2) + 5t - 38 = 0
6t² - 12 + 5t - 38 = 0
6t² + 5t - 50 = 0
D = 25 + 4*50*6 = 1225 = 35²
t12 = (-5 +- 35)/12 = 30/12 (5/2) - 40/12 (-10/3)
обратно к х
1. 1/x + x = 5/2
2x² - 5x + 2 = 0
D = 25 - 16 = 9 = 3²
x12 = (5 +- 3)/4 = 2 1/2
2. 1/x + x = -10/3
3x² + 10x + 3 = 0
D = 100 - 36 = 64 = 8²
x12 = (-10 +- 8)/6 = -3 -1/3
ответ x = {2,1/2,-3,-1/3}
вкратце
Чему равна вероятность того, что случайно выбранный горшок будет с дефектами (вероятность события A)?
Так как в данном случае вероятность - отношение числа благоприятных исходов к числу всех исходов, то:
P(A) = 28 / 400 = 0.07
Чему равна вероятность того, что случайно выбранный горшок не имеет дефектов (вероятность события B)?
Так как события A и B - противоположные, то есть ровно одно из них сбудется для одного произвольно выбранного горшка, то:
P(B) = 1 - P(A) = 1 - 0.07 = 0.93
Задача решена!
ответ: 0.93.
{6.25} = 2.5
{49} = 7
{4.41} = 2.1