x1 = -re(acos(-3)) + 2*pi - i*im(acos(-3))
x2 = 2*pi - i*im(acos(4))
x3 = re(acos(-3)) + i*im(acos(-3))
x4 = re(acos(4)) + i*im(acos(4))
Объяснение:
x1 = -re(acos(-3)) + 2*pi - i*im(acos(-3))
x2 = 2*pi - i*im(acos(4))
x3 = re(acos(-3)) + i*im(acos(-3))
x4 = re(acos(4)) + i*im(acos(4))
x1 = 3.14159265358979 + 1.76274717403909*i
x2 = 6.28318530717959 - 2.06343706889556*i
x3 = 3.14159265358979 - 1.76274717403909*i
x4 = 2.06343706889556*i
сумма
-re(acos(-3)) + 2*pi - i*im(acos(-3)) + 2*pi - i*im(acos(4)) + i*im(acos(-3)) + re(acos(-3)) + i*im(acos(4)) + re(acos(4))
=
4*pi + re(acos(4))
произведение
(((-re(acos(-3)) + 2*pi - i*im(acos(-3)))*(2*pi - i*im(acos(4*(i*im(acos(-3)) + re(acos(-3*(i*im(acos(4)) + re(acos(4)))
=
-(2*pi - i*im(acos(4)))*(i*im(acos(-3)) + re(acos(-3)))*(i*im(acos(4)) + re(acos(4)))*(-2*pi + i*im(acos(-3)) + re(acos(-3)))
Знаменатели дробей ≠ 0 ⇒ x ≠ 1 ; х ≠ - 1 .
х(х+1) - 5(х - 1) = 2
x² + x - 5x + 5 = 2
x² - 4x + 5 - 2 = 0
x² - 4x + 3 = 0
D = (-4)² - 4*1*3 = 16 - 12 = 4 = 2²
D>0 - два корня уравнения
х₁ = ( - (-4) - 2) / (2*1) = (4-2)/2 = 2/2 = 1 не подходит (т.к. х ≠ 1)
х₂ = (- (-4) + 2)/ (2*1) = (4+2)/2 = 6/2 = 3
ответ : х = 3
4(1-x) -3(x+2)< 5
4 - 4x - 3x - 6 < 5
- 7x - 2 < 5
- 7x < 5 + 2
- 7x < 7 | * (-1)⇒ меняем знак неравенства
7х > - 7
x > - 1
x∈ (-1 ; + ∞)