М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Roman789789
Roman789789
27.08.2022 01:18 •  Алгебра

Сторона ромба равна 5, а диагональ равна 6. найдите площадь ромба.

👇
Ответ:
tasinas
tasinas
27.08.2022
По теореме Пифагора вторая диагональ будет равна 8 см. 
Площадь будет равна половине произведений диагоналей = 24. (свойство ромба)
ответ: 24 сантиметра в квадрате.
4,4(61 оценок)
Открыть все ответы
Ответ:
1836294
1836294
27.08.2022
  Слагаемые, имеющие одинаковую буквенную часть, называют подобными слагаемыми.  

          Например:     2а   и   –5а ;       13xy   и   22xy ;         –21abc   и   13abc .  

Подобные слагаемые отличаются своими числовыми коэффициентами.  

          Чтобы сложить   (привести)   подобные слагаемые, надо сложить  
их коэффициенты и результат умножить на общую буквенную часть.  

          Приведем подобные слагаемые в выражениях :    

              5а + 2а – 3а       =       (5 + 2 – 3) • а     =     4а ;    

             18x + x – 12x       =       (18 + 1 – 12) • x     =     7x ;    
4,4(43 оценок)
Ответ:
Портнягин
Портнягин
27.08.2022
f(x)= \frac{3}{x}+2
1. область определения и значений функции
x \neq 0; \\
x\in(-\infty;0)\bigcup(0;+\infty);\\

y\in(-\infty;+\infty);
2.парность и не парность, периодичность(не периодичная)
парност когда f(-x)=f(x);
непарность когда f(-x)=-f(x);
f(-x)=- \frac{3}{x}+2;\\
f(-x) \neq f(x);\\
f(-x) \neq -f(x)\\
если бы не 2, то была бы непарною, а так, сама функция на 2 поднята вверх
3. поищем границы, для нахождения асимптот
\lim_{x \to -\infty}( \frac{3}{x}+2 ) =(\frac{3}{-\infty}+2=(2-0)-подходит к значению 2 "снизу"
\lim_{x \to +\infty}( \frac{3}{x}+2 )=( \frac{3}{+\infty+2})=(2+0)) подходит к значению 2 сверху, значит у=2 горизонтальная асимптота на \infty
посмотрим, как ведет себя функция у разрывов, он у нас один, х=0,
посмотрим чуть-чуть "левее" и "правее" на бескон малую величину
\lim_{x \to -0}( \frac{3}{x}+2 )=( \frac{3}{-0}+2)=-\infty;
\lim_{x \to +\infty}( \frac{3}{x}+2 )=( \frac{3}{+0}+2 )=+\infty
это разрыв второго рода, у нас функция левее оси ординат стремиться к -\infty а справа к+\infty
4.производные и экстремумы
y'= -\frac{3}{x^2} ;\\
y'=0; ==x^2-\infty(\{\pm\infty}^{2}\})
у нас нету єкстремумов, лишь точки разрыва, причем функция постоянно
падает, на всей области определения( при x\in(-\infty;0)\bigcup(0;+\infty)
5. можно ещё на вогнутость(выпуклость) и точки перегина посмотреть, для этого вторая производная берёться и приравниветься к 0
f''(x)=(f'(x))'= \frac{6}{x^3}
опять точек перегина нет, лишь разрыв
но при x<0, f''(x)<0=> f(x) выпукла вверх
при x>0, f''(x)>0 =>f(x)вогнута вниз
\textcopyright
4,7(17 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ