Сначала определим вероятность того, что среди выбранных четырех карт не окажется валетов. В колоде 32 карты не валеты. Вероятность того, что первая карта не валет равна 32/36 = 8/9. После этого останется 35 карт и 31 из них не валеты. Вероятность того, что вторая карта не валет, 31/35. Аналогично рассуждая получаем. что вероятность того, что третья карта не валет, равна 30/34 = 15/17, а для четвертой карты 29/33. Вероятность того, что среди четырех карт нет валетов, равна 8/9 * 31/35 * 15/17 * 29/33 = 7192/11781. Вероятность того, что среди четырех карт окажется хотя бы 1 валет, равна 1 - 7192/11781 = 4589/11781. Округлив дробь до десятых, получим 0.4. ответ: Вероятность того, что среди четырех карт окажется хотя бы 1 валет, равна 0.4
Наибольшее число попыток - это когда нужно перебрать ВСЕ возможные варианты (комбинации). 1. Количество всех возможных вариантов набора = 10^4 = 10000. Я поясню почему так: четыре позиции, каждая позиция может принимать 10 возможных значений (цифры от 0 до 9 - десять цифр). Для одной позиции = 10 вариантов. Для двух позиций: для каждого из десяти вариантов первой позиции есть десять вариантов второй позиции, всего = 10*10 = 100. Для трех позиций: для каждого из 100 вариантов первых двух позиций есть еще 10 вариантов третьей позиции, всего = 100*10 = 1000 вариантов. Для четырех: для каждого из 1000 вариантов первых трех позиций есть 10 вариантов четвертой позиции, то есть всего = 1000*10 = 10000 вариантов. 2. Аналогично первому: есть две позиции, каждая позиция может принимать 10 значений (цифры от 0 до 9 - десять цифр). Для одной позиции = 10 вариантов. Для двух позиций: каждому варианту для первой позиции соответствует еще 10 вариантов второй позиции, всего 10*10 = 100 вариантов (комбинаций).