А)D=289-120=169=13^2 x1=17-13/6=2/3 x2=17+13/6=5 б)D=144-144=0 x=12/8=1.5 в) и г) одинаковые:) D=36-160 < 0 Отсюда:решения нет. д)Если что ^2- это в квадрате 9x^2=16 x^2=16/9 x=корень из 16/9 х=4/3
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
1) Среди чисел на кубике делителем 6 являются: 1, 2, 3, 6. Поэтому p = 4/6 = 2/3.
2) У холодильника 6 граней. Если он должен храниться лишь, стоя дном вниз, в остальных случаях он хранится неправильно. Вероятность этого события p = 5/6.
3) ОО, ОР, РО, РР. Благоприятными являются 3 события.
4) Каждый из 3 детей может оказаться либо девочкой, либо мальчиком. Поэтому событие "приход трёх детей" имеет 2³ = 8 исходов. При этом событие "две девочки и один мальчик" происходит в 3 случаях. Мальчик приходит только первым, только вторым или только третим. Поэтому вероятность этого события: p = 3/8.
5) Событие имеет 2⁴ = 16 исходов. Решка выпадает больше раз чем орёл => решка выпадает 3 или 4 раза => орёл выпадает 1 или 0 раз. Орёл может выпасть 1 раз четырьмя только в 1-й, только во 2-й, только в 3-й или только в 4-й раз. Орёл может выпасть 0 раз только одним Т. е. благоприятных исходов: 4 + 1 = 5. И вероятность p = 5/16.
x1=17-13/6=2/3
x2=17+13/6=5
б)D=144-144=0
x=12/8=1.5
в) и г) одинаковые:)
D=36-160 < 0
Отсюда:решения нет.
д)Если что ^2- это в квадрате
9x^2=16
x^2=16/9
x=корень из 16/9
х=4/3