Объяснение:
a) x=1/4 - 3/40y 20x-7y=5 (это запиши как систему)
20(1/4-3/10y)-7y=55-3/2y-7y=5-3/2y-7y=0-17/2y=0y=0 x=1/4 ответ: (1/4 ; 0 )б) x=1/5 + 2/5y 15x-3y = 3 (система)
15(1/5 + 2/5y)-3y = -33+6y-3y= -33y= -6y= -2x= -3/5ответ: (-3/5 ; -2)в) a=4/9-14/9b 33a+42b=10 (система)
33(4/9-14/9b) +42b=1044/3-154/3b+42b=1044/3-28/3b=1044-28b=30-28b=-14b=0.5a=-1/3ответ: (-1/3 ; 0,5)г) x=14/13+12/13y 11x-4=18y (система)
11(14/13+12/13y)-4=18y154/13+132/13y-4=18y102/13+132/13y=18y102+132y=234y-102y=-102y=1x=2ответ: (2; 1)Объяснение:
y'' = y' + x
Делаем замену y' = z(x). Тогда y'' = z'(x). Подставляя в исходное уравнение, получаем:
- x - z + z' = 0
Представим в виде:
- z + z' = x
Это неоднородное уравнение. Сделаем замену переменных: z = u * v, z' = u' * v + u * v'.
-u * v + u * v' + u' * v = x
или
u( - v + v') + u' * v = x
Выберем переменную v так, чтобы выполнялись условия:
1. u * ( - v + v') = 0
2. u'v = x
1. Приравниваем u=0, находим решение для:
- v + v' = 0
Представим в виде:
v' = v
Преобразуем уравнение так, чтобы получить уравнение с разделяющимися переменными:
(dv / v) = dx
Интегрируя, получаем:
ln(v) = x
v = ex
2. Зная v, Находим u из условия: u' * v = x
u' * ex = x
u' = x * e-x
Интегрируя, получаем:
u = C + (- x - 1) * e-x
Из условия z=u*v, получаем:
z = u * v = (C + ( - x - 1) * e -x) * ex
или
z = C * ex - x - 1.
Поскольку y'=z, то интегрируя, окончательно получаем:
y=C1 * ex - x2 / 2 - x + C2
8x-10=3x или 2(4x-5)=3x.
Решая, любое из них получим, что х = 2