Y=4-x² 1. ОДЗ: x∈(-∞;+∞) 2. Чётность функции: 4-х²=4-(-х)²≡4-х², ⇒ функция чётная (симметричная относительно оси ОУ). 3. Критические точки: y`=(4-x²)`=-2x=0 у(0)=4-0²=4 ⇒ уmax=4, а (0;4) - точка перегиба. x=0 y`=0 ⇒ y`(0)=0 ⇒ имеем два интервала: -∞+0-+∞ Знак интервала определили простой подстановкой значений из интервала в уравнение у`=-2x y`>0 - функция убывает. y`<0 - функция возрастает. 4. Исследование на вогнутость и выпуклость: Точка перегиба х=0 у=4-х²=0 х₁ -2 х₂=2 -∞+-2+0-2-+∞ ⇒ x∈(-∞;0) - выпуклая. x∈(0;+∞) - вогнутая. Вывод: это парабола, опущенная вниз, вершина которой поднята относительно оси ОУ на 4 единицы.
Y=4-x² 1. ОДЗ: x∈(-∞;+∞) 2. Чётность функции: 4-х²=4-(-х)²≡4-х², ⇒ функция чётная (симметричная относительно оси ОУ). 3. Критические точки: y`=(4-x²)`=-2x=0 у(0)=4-0²=4 ⇒ уmax=4, а (0;4) - точка перегиба. x=0 y`=0 ⇒ y`(0)=0 ⇒ имеем два интервала: -∞+0-+∞ Знак интервала определили простой подстановкой значений из интервала в уравнение у`=-2x y`>0 - функция убывает. y`<0 - функция возрастает. 4. Исследование на вогнутость и выпуклость: Точка перегиба х=0 у=4-х²=0 х₁ -2 х₂=2 -∞+-2+0-2-+∞ ⇒ x∈(-∞;0) - выпуклая. x∈(0;+∞) - вогнутая. Вывод: это парабола, опущенная вниз, вершина которой поднята относительно оси ОУ на 4 единицы.
k(кас) = tgα = y'(x0)
x0 = 1
y'(x) = 15x^2 - 8x - 1
y'(x0) = y'(1) = 15 - 8 - 1 = 6
k(кас) = y'(1) = 6
ответ : 6