Объяснение:
Участвовало всего: 76 человек.
В обеих олимпиадах: 15 человек.
Следовательно, из 76 человек
15 - дважды принимали участие
76-15 = 61 чел. - только 1 раз
Пусть,
х - число участников по математике
у - число участников по физике
Причем, очевидно что без учета 15 принимавших участие в обеих олимпиадах имеем:
(х-15)+(у-15)=61
х+у-30=61
х+у=91
Выразим х и у по отдельности:
х = 91-у
у= 91-х
Т.к. х, у - это число участников, то эти числа должны быть целыми.
И если предположить, что допустим
х - меньше 46, то
при х < 46 этот х может быть равен 45, 44 и т.д
Поэтому при целых значениях
х < 46, равнозначно неравенству х ≤ 45.
Т.е. при х ≤ 45:
х = 91 - у
91 - у ≤ 45
91 - 45 ≤ у
у ≥ 91 - 45
у ≥ 46
А при у < 46, (при у ≤ 45)
у = 91 - х
91 - х ≤ 45
х ≥ 46
Как мы видим, при любых значениях х или у одно из них обязательно будет равно или больше 46
А значит, в какой-то олимпиаде обязательно приняли участие не менее 46 человек.
Ч.Т.Д.
√3Sin3x=Cos3x
делим дево право на cos3x так как cos3x=0 не является решением
sin3x/cos3x=1/√3
tg3x=√3/3
3x=pi/6+pi*n
x=pi/18+pi/3*N
2) Найти корни уравнения принадлежащие отрезку [0 ; 2П ]
( 1 + Cosx ) ( √2Sinx - 1 ) = 0
cosx=-1
x=pi+2piN
√2Sinx - 1=0
sinx=√2/2
x=(-1)^k*pi/4+pi*N
[0 2П]
П
п/4 3п/4