При x ≤0 система не имеет решения , т.к. не удовл. второе уравнение получается (-x+x)(y -a) =0 ≠2. ОСТАЕТСЯ РАССМАТРИВАТЬ ТОЛЬКО СЛУЧАЙ X>0. {x>0 ; x+4y =2a -2 ; x(y -a ) =1. {x>0 ; y =(2a -2 -x)/4 ; x((2a -2 -x)/4 -a ) =1. x((2a -2 -x)/4 -a ) =1; x² +2(a+1)x +4 =0 ; имеет решение, если D/4 =(a+1)² -4 =a ² +2a -3 =(a+3)(a -1) ≥0 ⇒a ∈( -∞ ;-3] U[ 1 ;∞) обе корни одного знака x₁*x₂ =4>0. * * *x₁ = -(a+1) -√(a ² +2a -3 ) ; x₂ = -(a+1) +√(a ² +2a -3 ) * * * еще одно ограничение на параметр a (x>0): a+1 < 0 ⇒ a < -1
1) Разрешим наше дифференциальное уравнение относительно производной - уравнение с разделяющимися переменными Воспользуемся определением дифференциала
Интегрируя обе части уравнения, получаем
- общее решение
Разделяем переменные
интегрируя обе части уравнения, получаем
- общий интеграл
Решение задачи Коши нет, т.к. при х=0 логарифм ln0 не существует
Пример 3. Убедимся, является ли дифференциальное уравнение однородным.
Итак, дифференциальное уравнение является однородным. Исходное уравнение будет уравнением с разделяющимися переменными если сделаем замену , тогда
Подставляем в исходное уравнение
Получили уравнение с разделяющимися переменными
Воспользуемся определением дифференциала
Разделяем переменные
Интегрируя обе части уравнения, получаем
Обратная замена
- общий интеграл
Пример 4. Это дифференциальное уравнение второго порядка с постоянными коэффициентами также однородное. Воспользуемся методом Эйлера Пусть , тогда будем иметь характеристическое уравнение следующего вида:
Тогда общее решение будет иметь вид:
- общее решение Пример 5. Аналогично с примером 4) Пусть , тогда получаем
(p³+q²)(q^4-p³q²+p^6)=p^9+y^6
(9n²-3mn+m²)(m+3n)=m³+27n³
(a^4+1)(a³-a^4+1)=a^12+1