корень 3x^2+5x-2=3x-1
(корень 9-х +х-5)=2
Здесь нет ни чего страшного, возводим обе части уравнений в квадрат
3х^2+5x-2=9x^2-6x+1
6x^2-11x+3=0
D=-11^2-4*6*3=49
x1=11+7/2*6=18/12=1.5
x2=11-7/12=1/3
(корень 9-х +х-5)=2
9-х+2((корень (9-х)(х-5))+х-5=4
4+2((корень (9-х)(х-5))=4
((корень (9-х)(х-5))=4-4=0-возводим обе части уравнений в квадрат
(9-х)(х+5)=0
9х+45-х^2-5x=0
x^2-4x-45=0
D=(-4)^2-4*1*(-45)=196
x1=4+14/2=9
x2=4-14/2=-5-не является корнем данного уравнения
только один корень х=9
корень(9-9)+корень(9-5)=2
корень(0)+корень(4)=2
2+0=2
2=2
корень(9-(-5))+корень((-5)-5)=2
корень(14)+корень(-10)=2-по св-ву квадратного корня х2=-5 не является корнем данного уравнения,по этому только один корень х1=9
5) 500/3*Π
Объяснение:
Объем шара выражается формулой:
V = 4/3*Π*R^3
Образующая конуса L, радиус конуса r и высота H образуют прямоугольный треугольник.
Гипотенуза L= 5, один катет H=2,5, второй катет по теореме Пифагора
r = 5*√3/2 = 2,5*√3
Это радиус основания конуса.
Углы в этом треугольнике 90°, 30° и 60°, причем 60° находится напротив радиуса конуса.
Теперь рассмотрим сферу.
В ней проходит два радиуса, один из центра сферы до вершины конуса, второй из центра сферы до любой точки на окружности конуса.
Радиусы одинаковые, и получается равнобедренный треугольник из R, R и L
При этом угол между R и L равен 60°. Значит, треугольник равносторонний.
Это значит, что R = L = 5 см.
Объем шара
V = 4/3*Π*R^3 = 4/3*Π*5^3 = 4/3*Π*125 = 500/3*Π
Время велосипедиста = 30/Х ч, время автомобиля = 30/(Х+50) ч.
Время велосипедиста больше времени автомобиля на 2,5 ч = 5/2 часа.
30/Х = 30/(Х+50) + 5/2
30/Х - 30/(Х+50) = 5/2
(30Х+1500-30Х) / (Х^2+50Х) = 5/2
1500/(Х^2+50Х) = 5/2
5Х^2 + 250Х = 3000
Х^2+50Х-600 = 0
корни квадратного уравнения Х1 = 10, Х2 = -60
отрицательный не подходит, поэтому скорость велосипедиста Х=10 км/ч