Пусть ширина прямоугольника равна Х. Тогда его длина15 - Х У нового прямоугольника ширина Х + 5, а длина 15 - Х - 3 = 12 - Х Поскольку площадь прямоугольника уменьшилась на 8 см², получаем уравнение Х * (15 - Х) - (Х + 5) * (12 - Х) = 8 15 * Х - Х² - 12 * Х + Х² - 60 + 5 * Х - 8 = 0 8 * Х - 68 = 0 Х = 8,5 Итак, ширина прямоугольника была 8,5 см, длина 15 - 8,5 = 6,5 см, а площадь 8,5 * 6,5 = 55,25 см².
После трансформации ширина прямоугольника стала 8,5 + 5 = 13,5 см, длина 6,5 - 3 = 3,5, а площадь 13,5 * 3,5 = 47,25 см², то есть уменьшилась на 55,25 - 47,25 = 8 см²...
по условию пирамида правильная треугольная, => основание высоты пирамиды - центр описанной около треугольника окружности - точка пересечения высот правильного треугольника, которые точкой пересечения делятся в отношении 2:1 считая от вершины.
прямоугольный треугольник: гипотенуза с=5 см - длина бокового ребра правильной треугольной пирамиды катет а=3 см - высота правильной пирамиды катет b найти, по теореме Пифагора: 5²=3²+b². b=4 см
b- (1/3) высоты правильного треугольника, которая вычисляется по формуле: a=8/√3
просто подставляем значения а и б в дробь