Предлагаю такое решение :
ответ: Нет.
Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.
Пусть искомый многочлен f(x) существует.
Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).
Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.
Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).
То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.
Объяснение:
1) 5/(x²+2x+1) -2/(1-x²)=1/(x-1)
5/(x+1)² +2/((x-1)(x+1)) -1/(x-1)=0
(5(x-1)+2(x+1)-(x+1)²)/((x-1)(x²+2x+1))=0
x-1≠0; x₁≠1
x²+2x+1≠0
Допустим:
x²+2x+1=0; D=4-4=0
x₂=-2/2=-1⇒x₂≠-1
5(x-1)+2(x+1)-(x+1)²=0
5x-5+2x+2-x²-2x-1=0
-x²+5x-4=0
x²-5x+4=0; D=25-16=9
x₃=(5-3)/2=2/2=1 - этот корень не подойдет для этого уравнения, так как x₁≠1.
x₄=(5+3)/2=8/2=4
ответ: 4.
2) 3/(x²-6x+9) +6/(9-x²)=1/(x+3)
3/(x-3)² -6/((x-3)(x+3)) -1/(x+3)=0
(3(x+3)-6(x-3)-(x-3)²)/((x+3)(x²-6x+9))=0
x+3≠0; x₁≠-3
x²-6x+9≠0
Допустим:
x²-6x+9=0; D=36-36=0
x₂=6/2=3⇒x₂≠3
3(x+3)-6(x-3)-(x-3)²=0
3x+9-6x+18-x²+6x-9=0
-x²+3x+18=0
x²-3x-18=0; D=9+72=81
x₃=(3-9)/2=-6/2=-3 - этот корень не подойдет для этого уравнения, так как x₁≠-3.
x₄=(3+9)/2=12/2=6
ответ: 6.
Решение задания приложено