Сегодня в самостоятельной был пример, совсем его не поняла (хотя учительница говорила, что самеые легкие нам дала). может, кто знает? 5sin x - 4sin x cos x + 5cos x = 5
В тригонометрии если не знаешь, что делать -> используй универсальную тригонометрическую подстановку sin x = 2t / (t^2 + 1) cos x = (1 - t^2) / (t^2 + 1) t = tg(x/2)
Один из корней второй скобки легко угадать, это t = 1. Деля вторую скобку на (t - 1) например, столбиком, узнаём разложение на множители 5t^3 - 9t^2 + 5t - 1 = (t - 1)(5t^2 - 4t + 1)
t(t - 1)(5t^2 - 4t + 1) = 0 t = 0 или t = 1 (у квадратного трёхчлена корней нет)
Чтобы вычислить площадь фигуры, ограниченной графиком функции f(x) = 9 - 0,6x^2, касательной к нему в точке x = -3 и прямой x = 1, мы должны сначала найти точки пересечения графика функции с прямыми x = -3 и x = 1. Затем мы найдем точку пересечения графика функции с касательной в точке x = -3. Находящейся точке пересечения графика функции и касательной в точке x = -3. Затем мы находим площадь фигуры, ограниченной графиком функции, прямой x = 1 и касательной.
1. Найдем точку пересечения графика функции f(x) с прямой x = -3. Для этого подставим x = -3 в уравнение функции:
f(-3) = 9 - 0,6(-3)^2
f(-3) = 9 - 0,6(9)
f(-3) = 9 - 5,4
f(-3) = 3,6
Таким образом, точка пересечения графика функции f(x) с прямой x = -3 имеет координаты (-3, 3.6).
2. Найдем точку пересечения графика функции f(x) с прямой x = 1. Для этого подставим x = 1 в уравнение функции:
f(1) = 9 - 0,6(1)^2
f(1) = 9 - 0,6(1)
f(1) = 9 - 0,6
f(1) = 8,4
Таким образом, точка пересечения графика функции f(x) с прямой x = 1 имеет координаты (1, 8.4).
3. Теперь найдем уравнение касательной к графику функции f(x) в точке x = -3. Для этого найдем производную функции и подставим x = -3:
f'(x) = -1.2x
f'(-3) = -1.2(-3)
f'(-3) = 3.6
Таким образом, уравнение касательной к графику функции f(x) в точке x = -3 имеет вид y = 3.6x + b. Чтобы найти значение b, подставим в уравнение координаты точки пересечения графика функции и касательной:
3.6 = 3.6(-3) + b
3.6 = -10.8 + b
b = 3.6 + 10.8
b = 14.4
Таким образом, уравнение касательной к графику функции f(x) в точке x = -3 имеет вид y = 3.6x + 14.4.
4. Наконец, найдем площадь фигуры, ограниченной графиком функции f(x), прямой x = 1 и касательной. Для этого найдем интеграл функции f(x) и вычислим площадь под кривой от x = -3 до x = 1:
Площадь = ∫(от -3 до 1) f(x) dx
Площадь = ∫(от -3 до 1) (9 - 0.6x^2) dx
Для вычисления данного интеграла, мы можем разделить его на две части: интеграл от -3 до x = -3 и интеграл от x = -3 до x = 1.
Первая часть:
∫(от -3 до x = -3) f(x) dx = 0
Вторая часть:
∫(от x = -3 до x = 1) f(x) dx = ∫(от x = -3 до x = 1) (9 - 0.6x^2) dx
Площадь = [9x - 0.2x^3/3] (от x = -3 до x = 1)
Площадь = [(9(1) - 0.2(1)^3/3) - (9(-3) - 0.2(-3)^3/3)]
Упрощая:
Площадь = [(9 - 0.2/3) - (-27 + 0.2/3)]
Площадь = [(9 - 0.0667) - (-27 + 0.0667)]
Площадь = [8.9333 - (-26.9333)]
Площадь = 8.9333 + 26.9333
Площадь = 35.8666
Таким образом, площадь фигуры, ограниченной графиком функции f(x), прямой x = 1 и касательной в точке x = -3, равна 35.8666.
Для доказательства данного равенства нам понадобится принцип математической индукции.
Принцип математической индукции состоит из двух шагов:
1) Базисный шаг: проверка равенства при n = 1 (или другом начальном значении).
2) Шаг перехода: предположение, что равенство верно для некоторого значения n = k, и доказательство верности равенства для n = k + 1.
Давайте применим эти шаги для данного равенства.
1) Базисный шаг:
Подставим n = 1 в равенство:
2*1 - 3 = 2 - 3 = -1
Таким образом, базисный шаг выполнен.
2) Шаг перехода:
Предположим, что равенство верно для некоторого значения n = k. То есть:
2^k - 3^k = (2 - 3)(2^(k-1) + 2^(k-2)*3 + ... + 3^(k-1))
Докажем равенство для n = k + 1:
Подставим n = k + 1 в левую часть равенства:
2^(k+1) - 3^(k+1)
Заметим, что в скобках стоит равенство, которое мы предположили верным для n = k:
=(2 - 3)(2^(k-1) + 2^(k-2)*3 + ... + 3^(k-1))
Таким образом, мы получили выражение, которое совпадает с правой частью равенства.
То есть, равенство верно и для n = k + 1.
Таким образом, мы доказали равенство
2^n - 3^n = (2 - 3)(2^(n-1) + 2^(n-2)*3 + ... + 3^(n-1)) при любых натуральных значениях n, используя принцип математической индукции.
sin x = 2t / (t^2 + 1)
cos x = (1 - t^2) / (t^2 + 1)
t = tg(x/2)
Подставляем и сразу домножаем на (t^2 + 1)^2:
10t(t^2 + 1) - 8t(1 - t^2) + 5(1 - t^2)(1 + t^2) = 5(t^2 + 1)^2
2 t - 10 t^2 + 18 t^3 - 10 t^4 = 0
t(5t^3 - 9t^2 + 5t - 1) = 0
Один из корней второй скобки легко угадать, это t = 1. Деля вторую скобку на (t - 1) например, столбиком, узнаём разложение на множители
5t^3 - 9t^2 + 5t - 1 = (t - 1)(5t^2 - 4t + 1)
t(t - 1)(5t^2 - 4t + 1) = 0
t = 0 или t = 1 (у квадратного трёхчлена корней нет)
tg(x/2) = 0
x/2 = pi*n
x = 2pi*n
tg(x/2) = 1
x/2 = pi/4 + pi*m
x = pi/2 + 2pi*m
ответ. x = 2pi*n, x = pi/2 + 2pi*m.