Треугольник ЕСF будет подобен треугольнику АЕD по двум углам (угол CEF равен углу AED, как вертикальные углы, угол ADE будет равен углу FCE, как накрест лежащие углы, образованные при пересечении двух параллельных прямых BC и AD секущей CD). В подобных треугольниках стороны пропорциональны, значит СF/AD = EC/ED. AB=CD=8 (как противоположные стороны параллелограмма). СD= EC+ED, а отсюда ED = CD-EC. Пусть EC=х, тогда CF/AD = х/8-х, 2/5=х/8-х, 5х=2(8-х), 7х=16, х= 2 целых 2/7. Значит, EC = 2 целых 2/7. Тогда ED=CD-EC=8-2 целых 2/7= 5 целых 5/7
К1, К2, К3, К4, К5 С3, С4, С5, С6 3 и 5 - простые числа, т. е. получаем комбинации К1-С3-К3 и К1-С5-К5. Поскольку карточка К1 только одна, объединяем эти две комбинации в одну: К3-С3-К1-С5-К5. Среди оставшихся С3 и С4 нет кратного К5. Это означает, что карточка К5 - обязательно крайняя. Дальше продолжаем расладывать в левую сторону. Кратным к К3 является С6: С6-К3-С3-К1-С5-К5. Делителем С6, помимо К3, является К2: К2-С6-К3-С3-К1-С5-К5. Кратным к К2 является С4: С4-К2-С6-К3-С3-К1-С5-К5. Делителем С4 является К4: К4-С4-К2-С6-К3-С3-К1-С5-К5. Сумма чисел на средних трёх картах: 6+3+3=12.
если я правильно поняла условие, то функция выглядит так: у= 3/(х2-9), где х2 - это х в квадрате. Если да, то
ограничения на область определения функции дает дробь, а именно то, что знаменатель не должен быть равным нулю. Именно это и решаем:
х2-9=0, расскладываем по формуле сокращенного умножения:
(х-3)(х+3)=0 произведение обращается в ноль, когда один из множителей равен нулю, значит,
х-3=0 или х+3=0
х=3 или х=-3 именно эти значения х не могут быть в области определения данной функции, поэтому
D(f): x принадлежит интервалам (-бесконечность;-3)U(-3;3)U(3;+ бесконечность)