Мне кажется задание переписано не правильно, должно быть {x=5-y {(5-y)^2-3y+15=0 25-10y+y^2-3y+15=0 у^2-13y+35=0 Д=169-4*35=29 у1=(13+√29)/2 y2=(13-√28)/2
x1=5-(13+√29)/2 x2=5-(13-√29)/2 ответ (5-(13+√29)/2 , (13+√29)/2) (5-(13-√29)/2 , (13-√28)/2)
1) F(x) = √(-3x+5) -x+1 - это вообще не уравнение, а функция. Если интересует, то могу приравнять к 0 √(-3x+5) -x+1 = 0 √(-3x+5) = x - 1 -3x + 5 = (x - 1)^2 = x^2 - 2x + 1 x^2 - x - 4 = 0 D = 1 - 4(-4) = 17 x1 = (1 - √17)/2; x2 = (1 + √17)/2 2) Если произведение равно 0, то один из множителей равен 0 Но нужно проверять, не будет ли отрицательного числа под вторым корнем. а) √(x - 1) = 1 x - 1 = 1 x = 2 11 + x = 13 > 0 - подходит б) √(11 + x) = 4 11 + x = 16 x = 5 5 - 1 = 4 > 0 - подходит x1 = 2; x2 = 5 3) √(3+x)*√(3-x) = x Слева стоит арифметический корень, т.е. неотрицательный. Значит, число справа тоже неотрицательно. Поэтому x >= 0 Возводим всё в квадрат (3+x)(3-x) = x^2 9 - x^2 = x^2 2x^2 = 9 x^2 = 9/2 = 18/4 x >= 0, поэтому подходит только один корень. x = √(18/4) = 3√(2)/2
Решение: Обозначим объём работы при рытье котлована за 1(единицу), а количество дней за которое вырывает один экскаватор котлован за (х) дней, тогда второй экскаватор вырывает котлован за (х-10) дней Производительность работы первого экскаватора за один день равна: 1/х второго экскаватора 1/(х-10) А так как работая вместе экскаваторы вырывают котлован за 12 дней, составим уравнение: 1 : [1/(х)+1/(х-10)]=12 1 : [(х-10*1+ (х)*1)/(х*(х-10)]=12 -здесь мы привели к общему знаменателю 1: [(х-10+х)/(х²-10х)]=12 (х²-10х)/(2х-10)=12 х²-10х=12*(2х-10) х²-10х=24х-120 х²-10х-24х+120+0 х²-34х+120=0 х1,2=(34+-D)/2*1 D=√(34²-4*1*120)=√(1156-480)=√676=26 х1,2=(34+-26)/2 х1=(34+26)/2=30 (дней-первый экскаватор вырывает котлован х2=(34-26)/2=4 - не соответствует условию задачи Второй экскаватор вырывает котлован за (х-10) или: 30-10=20 (дней)
ответ: Первый экскаватор вырывает котлован за 30дней, второй экскаватор за 20 дней
{x=5-y
{(5-y)^2-3y+15=0
25-10y+y^2-3y+15=0
у^2-13y+35=0
Д=169-4*35=29
у1=(13+√29)/2
y2=(13-√28)/2
x1=5-(13+√29)/2
x2=5-(13-√29)/2
ответ (5-(13+√29)/2 , (13+√29)/2) (5-(13-√29)/2 , (13-√28)/2)