М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kotkin
kotkin
28.09.2022 11:52 •  Алгебра

Покажите используя интерпретацию , число решений системы уравнений. запишите решение системы. 1) (всё под системой и во всех трёх) x-y=1 3x+6=3y 2) 3x+y=2 4-2y=6x 3) 2x-2y-5=0 5x+3y=4

👇
Ответ:
kate833
kate833
28.09.2022
Смотри решение во вложении
Покажите используя интерпретацию , число решений системы уравнений. запишите решение системы. 1) (вс
4,4(29 оценок)
Открыть все ответы
Ответ:
Katuhaazaza
Katuhaazaza
28.09.2022

Обозначим наше число как abcdefg. Счастливое число - это такое число, для которого выполняется условие b+d+f = a+c+e+g (*). Рассмотрим каждое предположение, и запишем для него соответствующее уравнение:

 

а) a<b<c<d<e<f<g => b+d+f < c+e+g < а+c+e+g => условие (*) не может быть выполнено

б) a>b>c>d>e>f>g => b+d+f < а+c+e < а+c+e+g => условие (*) не может быть выполнено

в) 7b7d7f7 => Если число счастливое, то должно выполнятся условие b+d+f = 7+7+7+7 = 7*4 = 28, но b+d+f <= 3*9 =27 => условие (*) не может быть выполнено

г) abc1cba => Если число счастливое, то должно выполнятся условие b+1+b = a+c+c+a => 2b+1 = 2(a+c) => нечетное_число = четное_число => условие (*) не может быть выполнено

д) abc2cba => Если число счастливое, то должно выполнятся условие b+2+b = a+c+c+a => 2(b+1) = 2(a+c) => b+1 = a+c => b = a+c-1 => условие (*) может быть выполнено (возьмем, например, число 1332331 - это число "счастливое", т.к. 3+2+3 = 1+3+3+1).

 

Итак, из всех приведенных условий, для счастливого числа может выполнятся только условие д)

 

ответ: "счастливое" семизначное число может быть числом вида abc2cba, как указано в условии д)

4,5(83 оценок)
Ответ:
sungatulin22
sungatulin22
28.09.2022
|x-1|>|x+2|-3
|x-1|-|x+2|>-3
Раскроем модули.
Приравняем каждое  подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак:
x-1=0        x+2=0
x=1            x=-2
Нанесем эти значения Х на числовую прямую:

(-2)(1)

Мы получили три промежутка.Найдем знаки  каждого подмодульного выражения на каждом промежутке:
      
           (-2)(1)
x-1                -                          -                          +
x+2                -                          +                        +

Раскроем модули на каждом промежутке:
1)x<-2
На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком:
-x+1+x+2>-3
3>-3 - неравенство верное при любых Х на промежутке x<-2

2) -2<=x<1
На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком:
-x+1-x-2>-3
-2x-1>-3
-2x>1-3
-2x>-2
x<1
С учетом промежутка -2<=x<1 получаем x e [-2;1)

3)x>=1
На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака:
x-1-x-2>-3
-3>-3
Неравенство не имеет решений на этом промежутке
Соединим решения 1 и 2 промежутков и получим такой ответ:
x e(-беск.,1)
4,5(47 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ