1) (х⁴+4х²-5)/ (x²+5x+6) ≤ 0
x²=a
4a²+a-3=0
D=1+48=49
a1=(-1-7)/8=-1 ⇒x²=-1 U a2=(-1+7)/8=0,75⇒x²=3/4⇒x=-√3/2 U x=√3/2
x1+x2=-5 U x1*x2=6⇒x1=-3 U x2=-2
+ _ + _ +
(-3)(-2)[-√3/2][√3/2]
x∈(-3;-2) U [-√3/2;√3/2]
2)(x⁴-2x²-8)/ (x⁴-2x²-3) > 0
x²=a
a²-2a-8=0
a1=a2=2 U a1*a2=-8
a1=-2⇒x²=-2 U a2=4⇒x²=4⇒x=-2 U x=2
x²=b
b²-2b-3=0
b1=b2=2 U b1*b2=-3
b1=-1⇒x²=-1 U b2=3⇒x=-√3 U x=√3
+ _ + _ +
(-2)(-√3)(√3)(2)
x∈(-∞;-2) U (-√3;√3) U (2;∞)
5x^2+14x-3=-5x^2-14x+3
D=14^2-4*5*(-3)=196+60=256
x1=(-14+16)/2*5=1/5=0.2
x2=(-14-16)|2*5=-3
Теперь можем разложить :
5x^2+14x-3=5(x-0.2)(x+3)