Находим производную заданной функции: Отсюда видно, что производная равна нулю только в одной точке х = 0. Но у функции есть 2 точки разрыва, которые легко увидеть, если уравнение записать в виде (разложив знаменатель на множители): То есть в точках х=-2 и х=2 функция имеет разрыв. В этих же точках производная не существует. Из этого следует, что функция имеет 3 критические точки: х = -2, х = 0, х = 2. Найдём знаки производной левее и правее этих точек: х = -3 -2 -1 0 1 2 3 y' = 1.92 - 1.78 0 -1.78 - -1.92. Из этой таблицы видно, что у функции есть местный максимум в точке х = 0, при переходе через которую производная меняет знак с + на -. Также можно дать ответ на монотонность функции: Где производная положительна - там функция возрастает, где производная отрицательна - там функция убывает. Функция возрастает: (-∞ < x < -2) ∪ (-2 < x < 0), убывает: (0 < x < 2) ∪ (2 < x < +∞).
Пусть скорость течения равна х. Тогда скорость по течению равна (5+х) км/ч, скорость против течения равна( 5 - х) км/ч. 14 часов лодка отсутствовала, из них 1, 5 часа отдыхала. Время, которое лодка потратилa чисто на дорогу, равно 12, 5 часам. Составим уравнение: 30/(5-х) +30/(5+х) = 12,5; 30(5+х) + 30(5 -х) = 12,5*(5-х)(5+х); 150 +30х ++150 -30x= 12,5(25 - x^2);; 300=12,5*25 - 12,5 x^2; 12,5 x^2=12,5; x^2=1; x=1.
проверка: По течению лодка плыла 30 км со скорость 5+1=6 км/ч и потратила на это 30/6=5 часов, против течения лодка плыла со скорость 5-1=4 км/ч и потратила всего 30/4=7,5 часов. В сумме получается 5 + 7,5 =12, 5 часов. ОТвет ; скорость течения равна 1 км/ч