ответ: 11
Объяснение:
Решение в приложении
Сначала узнаем сколько всего чисел, кратных 102 и не превышающих 10000. Для этого достаточно вычислить неполное частное при делении 10000 на 102, это 98.
Перед нами последовательность чисел, каждое из которых делится на 102: {1·102; 2·102; 3·102; ... ; 98·102}. Узнаем, какие из этих чисел кратны 14 и 15.
Заметим, что 102 = 2·3·17, а 14 = 2·7. Числа в нашей последовательности имеют вид 102n. Тогда число такого вида будет делиться на 7, если n кратно 7. Количество таких чисел можно также найти при делении 98 на 7, это 14. Аналогично и для 15 = 3·5 можно получить, что чисел, кратных 15, в нашей последовательности [98/5] = 19 ([x] - целая часть числа x).
Итак, у нас есть 98 чисел кратных 102, из них 14 чисел кратны 14, а 19 чисел кратны 15. Тогда количество чисел, удовлетворяющих условию: 98 - 14 - 19 = 65.
Хотел бы я так сказать, однако всего их не 65 :)
Дело в том, что в нашей последовательности есть числа, которые делятся и на 14, и на 15, а мы это не учли (в нашем ответе числа такого рода вычитались по 2 раза). Это легко исправить, если узнать, сколько чисел делятся и на 14, и на 15.
Число делится и на 14, и на 15 тогда и только тогда, когда оно делится на НОК(14, 15) = 210.
Заметим, что 210 = 2×3×5×7, а 102 = 2·3·17 (как уже выяснялось ранее). Значит, числа вида 120n делятся на 210, если n кратно 35. Количество таких чисел: [98/35] = 2.
Тогда у нас 65+2 = 67 чисел, удовлетворяющих условию. Можно писать ответ.
ответ: 67.
Сначала узнаем сколько всего чисел, кратных 102 и не превышающих 10000. Для этого достаточно вычислить неполное частное при делении 10000 на 102, это 98.
Перед нами последовательность чисел, каждое из которых делится на 102: {1·102; 2·102; 3·102; ... ; 98·102}. Узнаем, какие из этих чисел кратны 14 и 15.
Заметим, что 102 = 2·3·17, а 14 = 2·7. Числа в нашей последовательности имеют вид 102n. Тогда число такого вида будет делиться на 7, если n кратно 7. Количество таких чисел можно также найти при делении 98 на 7, это 14. Аналогично и для 15 = 3·5 можно получить, что чисел, кратных 15, в нашей последовательности [98/5] = 19 ([x] - целая часть числа x).
Итак, у нас есть 98 чисел кратных 102, из них 14 чисел кратны 14, а 19 чисел кратны 15. Тогда количество чисел, удовлетворяющих условию: 98 - 14 - 19 = 65.
Хотел бы я так сказать, однако всего их не 65 :)
Дело в том, что в нашей последовательности есть числа, которые делятся и на 14, и на 15, а мы это не учли (в нашем ответе числа такого рода вычитались по 2 раза). Это легко исправить, если узнать, сколько чисел делятся и на 14, и на 15.
Число делится и на 14, и на 15 тогда и только тогда, когда оно делится на НОК(14, 15) = 210.
Заметим, что 210 = 2×3×5×7, а 102 = 2·3·17 (как уже выяснялось ранее). Значит, числа вида 120n делятся на 210, если n кратно 35. Количество таких чисел: [98/35] = 2.
Тогда у нас 65+2 = 67 чисел, удовлетворяющих условию. Можно писать ответ.
ответ: 67.
ответ: S=4,5 кв. ед.
Объяснение:
y=4-x² y=x+2
4-x²=x+2
x²+x-2=0 D=9 √D=3
x₁=-2 x₂=1
S=₋₂∫¹(4-x²-(x+2)dx=₋₂∫¹(4-x²-x-2)dx=₋₂∫¹(2-x-x²)dx=(2x-x²/2-x³/3) ₋₂|¹=
=2*1-(1²/2)-(1³/3)-(2*(-2)-(-2)²/2-(-2)³/3)=2-(1/2)-1/3-(-4-4/2-(-8/3))=
=2-(1/2)-(1/3)+4+2-(8/3)=8-(1/2)-3=4,5.