По формуле нахождения производной от деления. Пишем, что... (Производная от числителя умножить на знаменатель) - (Производная от знаменателя умножить на числитель) и все это деленное на знаменатель в квадрате. // Производная от 2 = 0 // Производная от (x^3-x) = (3x^2-1)
Примем весь урожай за единицу. По плану нужно было выполнять в день 1:12=1/12 часть работы После 8 дней совместной работы убрано было 8*1/12=8/12=2/3 и осталось убрать 1 -2/3=1/3 часть всей работы. Вторая бригада закончила 1/3 часть работы за 7 дней. Следовательно, каждый день она выполняла (1/3):7=1/21 часть работы. Всю работу вторая бригада могла бы выполнить за 1:1/21=21 день. Первая выполнила бы всю работу за х дней с производительностью 1/х работы в день. Разделив всю работу на сумму производительностей каждой бригады получим количество дней, за которую она могла быть выполнена, т.е. 12 дней. 1:(1/21+1/х)=12 12*(1/21+1/х)=1 12/21+12/х=1 9х=252 х=28 ( дней) ответ: Первая бригада могла бы выполнить работу за 28 дней, вторая - за 21 день.
(Производная от числителя умножить на знаменатель) - (Производная от знаменателя умножить на числитель) и все это деленное на знаменатель в квадрате.
// Производная от 2 = 0
// Производная от (x^3-x) = (3x^2-1)
Получаем
=((0*(x^3-x)) - ((3x^2-1)*2))/(x^3-x)^2 = (-2*(3x^2-1)/(x^3-x)^2