Возьмём скорость пропускания второй трубы за х, тогда скорость пропускания первой=х-4
Время, за которое первая труба заполняет 672л воды=672/х-4, а время, за которое 2 труба заполняет 560л воды=560/х. Известно что 2 труба заполняет свой резервуар на 8 минут быстрее, поэтому можно составить уравнение:
672/(х-4) - 560/х=8 домножаем всё на х(х-4) сразу укажем что х не может быть равен 4 (тк при этом идёт деление на ноль чего делать нельзя)
получаем:
672х-560(х-4)=8х(х-4)
672х-560х+2240=8х^2-32х переносим всё в правую часть и считаем
8х^2-144х-2240=0 разделим всё на 8
х^2-18х-280=0
D=18*18+4*280=324+1120=38^2
отсюда х1=(18-38)/2=-10(пост корень тк скор пропускания не может быть отриц)
х2=18+38/2=28
Значит 1 труба пропускает 28-4=24л воды а вторая-28л воды
После первого знака равно
х^2 и с/а остаются неизменными, все преобразования происходят с b/a *x
2*b/2a*х это то же самое что и просто b/a*x, там просто добавили двойку в знаменатель и умножили на два. Эти двойки сокращаются. Что касается (b/2a)^2, эти две дроби написаны одна со знаком плюс а другая со знаком минус вместе они дают ноль и ничего не значат их добавили просто для удобства.
После второго знака равно
В предыдущем выражении можно было заметить формулы сокращённого умножения по типу (а+б)^2. После второго знака равно, их собрали в первую скобку. И у нас осталось( -b/2a)^2 и с/а. Их собрали в отдельную скобку, но просто для удобства. Можно было этого не делать.
После третьего знака равно
Здесь дробь (-b/2a)^2 перемножили на саму себя чтобы избавится от квадрата а потом сложили с с/а приведя их к общему знаменателю.
Если понравился ответ, отметь как лучший