Второй объем меньше первого на 15,3 %
Объяснение:
Изначально радиус конуса r был 100%. Теперь же его увеличили на 10%, и теперь радиус конуса r₂ равен 110%. Так же это можно записать как:
r₂ = 1,1 × r
Теперь к высоте. С ней все тоже самое, только уменьшили. Значит h = 100%, a h₂ = 70%. То есть h₂ = 0,7 × h
Подставляем новые данные в формулу:
V₂ = × π × (1,1 × r)² × 0,7 × h =
× π × 1,21r² × 0,7h
Теперь если поделить V₂ на V₁ (V₁ = × π × r² × h), то получим 0.847, в столько раз второй объем меньше чем первый, или же это можно записать как 100% - 84,7% = 15,3 %
Наибольшее значение функции g(x) на отрезке [0; 2] – 1
Объяснение:
1) Найдём производную данной функции:
g'(x) = 12x-12x^2
2) Найдём нули производной:
12x-12x^2=0
12x(1-x)=0
x1=0 x2=1
3) Определим "поведение" функции на отрезках [0; 1] и [1; 2]:
На отрезке [0; 1] функция возрастает
На отрезке [1; 2] функция убывает
Чтобы найти наибольшее/наименьшее значение первообразной функции, нужно подставить абсциссу точки максимума/минимума в первообразную функцию.
Точкa максимума функции g(x) – 1.
g(1) = 6-4-1 = 1
х₁ = - 4 или х₂ = 4
-4 4
°°> x
x∈ (-4; 4)
2) x² - 95 ≤ 0
х₁ = - √95 или х₂ = √95
-√95 √95
**> x
x∈ [-√95 ; √95]
3) x² + 1 > 0
x² > -1 - НЕТ решения
4) x² - 3 ≥ 0
х₁ = - √3 или х₂ = √3
-√3 √3
**> x
x∈ (-∞; -√3] U [√3; +∞)