найдем дискриминант квадратного уравнения:
d = b² - 4ac = (-16)² - 4·1·48 = 256 - 192 = 64
так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
х₁ = 4, х₂ = 12
12² + (12-7)² = 13² - проверяем
144 + 25 = 169 и 13² = 169 13 больше 12 на 1, а 12 больше 5 на 7
Дано:
Торможение:
1-я сек. - 16 м
каждая следующая сек. на 1.1 м меньше
Найти: ? полных сек. для остановки
Решение с формулы n-члена арифметической прогрессии:
a₁=16
d=-1.1
a(n)=0 - остановка
a(n)=a₁+d(n-1)
16+(-1.1)(n-1)=0
16-1.1n+1.1=0
-1.1n=-17.1
n=15.(54)
Поскольку n - всегда целое число, значение 0 не является членом данной арифметической прогрессии. Тем не менее, выяснилось, что для полного торможения (остановки), потребуется 15.(54) сек.
Округляем до целых секунд: 15.(54)≈16 сек.
ответ: полных 16 сек. потребуется