Чтобы найти ОДЗ, нужно выписать выражения с переменной на которую могут быть запреты. Например, 1/х. ОДЗ: все числа, кроме ноля, так как делить на ноль нельзя. Что касается условия. На основания 0,6 и 1 2/3 запретов нет, как и на показатели степеней. Но есть условия для логарифмов. Во-первых, основания должно быть больше ноля (10>0), во-вторых, число под знаком логарифма должно быть положительным. То есть х^2>0 и -х>0. Число в квадрате всегда больше ноля, тогда решим второе: -х>0. Получается, что х<0. Поэтому ОДЗ: х<0.
сгруппируем слагаемые скобками;
= (35a 2+7a 2b 2) + (5b+b 3) =
вынесем за скобки общий множитель первой,
а затем и второй группы;
= 7a 2 • (5+b 2) + b • (5+b 2) =
у нас получилось выражение из двух слагаемых, в каждом
из которых присутствует общий множитель (5+b 2).
Его мы вынесем за скобку;
= (7a 2+b) • (5+b 2) .
Значит:
35a 2+7a 2b 2+5b+b 3 = (7a 2+b) (5+b 2) .
Разложим на множители ещё один многочлен :
10b 2a – 15b 2 – 8аb + 12b + 6а – 9 =
сгруппируем слагаемые скобками;
= (10b 2a – 15b 2) – (8аb – 12b) + (6а – 9) =
вынесем за скобки общий множитель первой,
а затем второй и третьей группы;
= 5b 2 • (2a – 3) – 4b • (2а – 3) + 3 • (2а – 3) =
у нас получилось выражение из трех слагаемых, в каждом
из которых присутствует общий множитель (2а – 3).
Его мы вынесем за скобку;
= (5b 2 – 4b + 3) • (2a – 3) .