![\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]](/tpl/images/1360/4170/bfd50.png)
Объяснение:
Рассмотрим сначала первое неравенство системы.
Начнем с ОДЗ:

Продолжим решение:

1)

Замена: 
.

Обратная замена:

С учетом ОДЗ оба корня подходят.
2)

С учетом ОДЗ получим, что решение неравенства:
![x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)](/tpl/images/1360/4170/0c6fd.png)
Теперь перейдем ко второму неравенству системы:
Понятно, что сначала нужно написать ОДЗ.

Продолжим решение:
![36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}](/tpl/images/1360/4170/40301.png)
Заметим, что данное неравенство хорошо раскладывается на множители:
![36^x+36\sqrt[4]{6}-6^{x+\frac{1}{4}}](/tpl/images/1360/4170/de2d2.png)
Решим неравенство по методу интервалов.
1)
![\sqrt[4]{6}-6^x=0\\6^x=6^{\frac{1}{4}}\\x=\dfrac{1}{4}](/tpl/images/1360/4170/8f389.png)
2)

Введем функции 
 и 
. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно, 
, верно. Так, мы решили это уравнение, получив, что его корень x=2.
Тогда решение неравенства с учетом ОДЗ:

Итого имеем:
![x\in\left(\dfrac{1}{27};\;\dfrac{1}{3}\right]\cup[9;\;+\infty)\\x\in\left(\dfrac{1}{4};\;2\right)](/tpl/images/1360/4170/0ebfe.png)
Найдем пересечение:
![x\in\left(\dfrac{1}{4};\;\dfrac{1}{3}\right]](/tpl/images/1360/4170/792e3.png)
Задание выполнено!
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . 
 А за у дней может закончить Алиса, тогда еѐ производительность равна / у . 
 Т.к. они могут напечатать курсовую работу за 6 дней, 
то /х + /у = 1/  
 Если сначала % = / части курсовой напечатает Катя, 
 а затем завершит работу Алиса, то Алисе остается 
% = / части курсовой. 
 Вся курсовая работа будет выполнена за 12 дней т.е. 
 ( /) х + (/ ) у = .
  Решим систему: 
 /х + /у = / ,
  (/) х + (/ ) у = .
   + = , 
 + = ; 
  у = − , ;
 + * ( − , ) = *( − , )
  у = − , ;
 , ² − + = ; 
 у = − , ;
 ² − + = ; 
 ² − + = ; 
 =  , у = 
 или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. 
 Значит, Катя может напечатать курсовую работу за 10 дней. 
 ответ. за 10 дней
х+2 х+1 х-1
5 - 5 + 5 = 505
х+1 х+2- (х+1) х+1- (х+1) х-1- (х+1)
5 ( 5 - 5 + 5 = 505
х+1 1 0 -2
5 ( 5 - 5 + 5 ) = 505
х+1
5 ( 5 - 1 + 1/25 ) = 505
х+1
5 * 4,04 = 505
х+1
5 = 505 : 4,04
х+1
5 = 125
х+1 = log₅ 125
х+1 = 3
х = 2
ОТвет: 2.