Объяснение:
Рассмотрим сначала первое неравенство системы.
Начнем с ОДЗ:
Продолжим решение:
1)
Замена: .
Обратная замена:
С учетом ОДЗ оба корня подходят.
2)
С учетом ОДЗ получим, что решение неравенства:
Теперь перейдем ко второму неравенству системы:
Понятно, что сначала нужно написать ОДЗ.
Продолжим решение:
Заметим, что данное неравенство хорошо раскладывается на множители:
Решим неравенство по методу интервалов.
1)
2)
Введем функции и . Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно, , верно. Так, мы решили это уравнение, получив, что его корень x=2.
Тогда решение неравенства с учетом ОДЗ:
Итого имеем:
Найдем пересечение:
Задание выполнено!
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
х+2 х+1 х-1
5 - 5 + 5 = 505
х+1 х+2- (х+1) х+1- (х+1) х-1- (х+1)
5 ( 5 - 5 + 5 = 505
х+1 1 0 -2
5 ( 5 - 5 + 5 ) = 505
х+1
5 ( 5 - 1 + 1/25 ) = 505
х+1
5 * 4,04 = 505
х+1
5 = 505 : 4,04
х+1
5 = 125
х+1 = log₅ 125
х+1 = 3
х = 2
ОТвет: 2.