a) корень из 18 надо представить как корень из 9*2, тогда корень из 9=3, и под корнем останется 2
я заменю слово корень значком V, чтобы писать покороче, ладно? То есть V18=3V2, отсюда
1,4<V2<1,5
3*1,4<3V2<3*1,5
4,2<V18<4,5 т.к. 2,2<V5<2,3 то из первого неравенства вычтем второе и получим
2<V18-V5<2,2
б) 1,4<V2<1,5 V10=V2*V5, а 2,2<V5<2,3, значит выражение V2+V5=V2(1+V5) найдем границы выражения 1+V5 1+2,2<1+V5<1+2,3 это будет 3,2<(1+V5)<3,3 теперь перемножим все части первого и последнего неравенств
1,4*3,2<V2*(1+V5)<1,5*3,3 4,48<V2+V10<4,95
1) если х=0, то из первого уравнения у=±1, а из второго у=0, поэтому х≠0, разделим обе части 2 уравнения на х², получим
2+5(у/х)-7(у/х)²=0, пусть у/х=к, тогда к²-(5/7)к-2/7=0; по Виету к=1; к=-2/7;
1) к=1, тогда у=х, подставим в 1 уравнение. получим у²-у²+3у²=3;⇒у=±1; х=±1, решения системы (1;1); (-1;-1).
2) у/х=-2/7; у=-2х/7; подставим в 1 уравнение. получим
х²-(-2/7)х²+3(-2х/7)²=3;⇒98х²+14х²+12х²=147; 147=75х²;25х²=49;
х=±√(49/25)=±7/5=±1.4
3) если х=7/5=1.4, то у=-2*7/(7*5)=-2/5=-0.4
и третье решение (1.4; -0.4)
4) если х=-7/5, то у =2*7/(7*5)=2/5=0.4 и четвертое решение (-1.4; 0.4)