Все 4 функции вида y = kx + b. если b > 0, то прямая соприкасается с осью ординат выше оси абсцисс, а если b < 0, то прямая соприкасается с осью ординат ниже оси абсцисс.
Значит, графики A и B соответствуют уравнениям 2 и 3, а графики C и D соответствуют уравнениям 1 и 4. Определим теперь конкретно какой график к какому уравнению подходит.
Рассмотрим уравнение, в котором k = 2
y = 2x + 5, причём x = = 2,5. Значит, прямая проходит через точку абсцисс 2,5.
Рассмотрим уравнение, в котором k = 1
y = x - 5, из свойств числового коэффициента b следует, что график проходит через точку ординат -5, а из формулы y = a(x - m)² следует, что точка соприкосновения оси абсцисс и прямой смещена вправо на 5.
Проведя аналогичные рассуждения с остальными двумя уравнениями и их графиками, придём к выводу, что
1) - C
2) - A
3) - B
4) - D
1) Пооскольку по условию AM = MB(из того, что CM-медиана), а AH = HC = 2, то MH-средняя линия ΔABC. MH = 0.5BC.
2)Рассмотрим ΔABH,<H=90°. AB = 3*2 = 6 - по свойству медианы. AH = 2. По теореме Пифагора, BH = √6² - 2² = √32 = 4√2.
3)рассмотрю ΔHBC,<H = 90°. По теореме Пифагора, BC = √(4√2)² + 4 = √36 = 6.
HM = 0.5 * 6 = 3.
Либо можно было решить чуть проще. Рассмотрим ΔABH,<H = 90°. Мы видим, что раз MH - средняя линия, то AM = MB. Следовательно, в ΔABH HM - медиана. Воспользуюсь особым свойством медианы, проведённо в прямоугольном треугольнике к гипотенузе: она равна половине гипотенузы. Значит, HM = 0.5 * AB = 3. Так решалась эта задача ))