М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
linagaribyan
linagaribyan
23.08.2021 08:02 •  Алгебра

Решите уравнение 12,25 - 3х^2 = 6x^2

👇
Ответ:
Rina12346
Rina12346
23.08.2021
12,25 - 3х^2 = 6x^2
12.25=9x²
x²=12.25/9
x=3.5/3=7/6
x=-7/6
4,6(62 оценок)
Открыть все ответы
Ответ:
Viktoriahhjgfdsaqw
Viktoriahhjgfdsaqw
23.08.2021
Сделаем замену |x| = y, тогда x^2 = |x|^2 = y^2.
Получаем уравнение:
y^2 - 6y + 5 - a = 0,
D/4 = 3^2 - (5-a) = 9 - 5 + a = 4+a,
Если D/4 <0,  то решений нет.
Если D/4 = 0, то единственное решение квадратного уравнения y=A, <=> |x|=A, не более двух корней (поэтому эти значения отметаем).
D/4 >0, <=> 4+a>0, <=> a>-4.
Тогда квадратное уравнение имеет два корня.
y1 = 3-(√a+4),
y2 = 3+(√a+4),
Видим, что y2 = 3+(√a+4)>=3>0, и уравнение |x|=y2 имеет два корня.
Уравнение же |x|=y1 = 3-(√a+4) может не иметь корней, иметь один корень (тот случай, который нас интересует) или два корня.
|x|=y1 = 3-(√a+4) = 0, тогда один корень
3=(√a+4),
3^2= 9 = a+4,
a = 9-4 = 5,
Условие a = 5>-4 выполняется. При этом (a=5) Корни совпасть не могут: уравнение |x|=y2 дает отрицательный и положительный корни, а
уравнение |x|=y1  дает корень равный нулю.
ответ. а=5.
4,4(65 оценок)
Ответ:
Надюфка1997
Надюфка1997
23.08.2021
Сначала найдём экстремум(ы) функции. Для этого возьмём первую производную функции и приравняем её к нулю, так как в точке экстремума (минимума или максимума) первая производная равна нулю. 
y'=2x;
2x=0;
x=0; (это точка экстремума)
Теперь определим, что это: максимум функции или минимум.
Если вторая производная функции в этой точке больше нуля, то это минимум, если больше нуля, то это максимум.
y''=2; 2>0, значит это минимум функции y=x^2, то есть на интервале (-бесконечность; 0) функция убывает, а на интервале (0;+бесконечность) она возрастает.
границы отрезка больше минимума, значит на этом отрезке функция возрастает, следовательно y(1)<y(3);
y(1)=1^2=1; - минимальное значение на отрезке;
y(3)=3^2=9; - максимальное значение на отрезке;
4,7(69 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ