Система неравенств не имеет решений.
Объяснение:
Решить систему неравенств:
7(3х+2)-3(7х+2)<2х
х²+3х+40<=0
Первое неравенство:
7(3х+2)-3(7х+2)<2х
21х+14-21х-6<2x
8<2x
-2x<-8
2x>8
x>4
x∈(4, +∞), решение первого неравенства, то есть, решения неравенства находятся в интервале при х от 4 до + бесконечности.
Неравенство строгое, скобки круглые.
Второе неравенство, решить как квадратное уравнение:
х²+3х+40=0
х₁,₂=(-3±√9-160)/2
D<0, нет корней, уравнение не имеет решения.
Так как одно неравенство из системы неравенств не имеет решения, следовательно, система не имеет решений.
Система неравенств не имеет решений.
Объяснение:
Решить систему неравенств:
7(3х+2)-3(7х+2)<2х
х²+3х+40<=0
Первое неравенство:
7(3х+2)-3(7х+2)<2х
21х+14-21х-6<2x
8<2x
-2x<-8
2x>8
x>4
x∈(4, +∞), решение первого неравенства, то есть, решения неравенства находятся в интервале при х от 4 до + бесконечности.
Неравенство строгое, скобки круглые.
Второе неравенство, решить как квадратное уравнение:
х²+3х+40=0
х₁,₂=(-3±√9-160)/2
D<0, нет корней, уравнение не имеет решения.
Так как одно неравенство из системы неравенств не имеет решения, следовательно, система не имеет решений.
пускай
<1 = 4x
<2 = 2x
тогда
<1 + <2 = 180 = 4x + 2x = 6x
x= 180/6 = 30
<1 = 4x= 120
<2 = 2x = 60
так как <1 и <2 больше угла А, то внешний угол при вершине В может быть как 60 так и 120 градусов
имеем два варианта решения:
1) внешний угол при вершин В равен 120 градусов
тогда <C + <A = 120 градусов
<C = 120 - <A = 80 градусов
2) Внешний угол при вершине В равен 60 градусов
<C + <A = 60 градусов
<C = 60 - <A = 20 градусов