По условию задачи, если к некоторому палиндрому (х+3) прибавить 2, то получится также палиндром (х+5). Найдем этот палиндром (х+3).
Заметим, что если при прибавлении к числу 2 не произошло перехода в старшие разряды, то получившееся число не будет палиндромом. Значит, последняя цифра числа (х+3) равна 8 или 9. Тогда, после прибавления к такому числу 2, его последняя цифра станет равной 0 или 1 соответственно. Но по смыслу палиндрома, эта же цифра должна являться и его первой цифрой. Единственный возможный вариант - произошел переход через все разряды вплоть до старшего в исходном числе.
Единственное число-палиндром, при прибавлении к которому 2 произойдет переход по всем разрядам - это число 9999. Заметим, что результат суммы 9999+2=10001 - палиндром.
Таким образом, число (х+3) найдено и равно 9999.
Значит, х=9996.
ответ: 9996
№11/(1+v2)+1/(v2+v3)+1/(v3+2)=((v3+2)(v2+v3)+(1+v2)(v3+2)+(v3+v2)(1+v2))/((1+v2)(v2+v3)(v3+2))== (v6+3+2v2+2v3+v3+2+v6+2v2+v3+v6+v2+2)/((v2+v3+2+v6)(v3+2))==(3v6+5v2+4v3+7)/(v6+2v2+3+2v3+2v3+4+3v2+2v6)==(3v6+5v2+4v3+7)/(3v6+5v2+4v3+7)=11/(2-v3)-1/(v3-v2)+1/(v2-1)=((v2-1)(v3--v3)(v2-1)+(2-v3)(v3-v2))/((2-v3)(v3-v2)(v2-1))=(v6-2-v3+v2-2v2+2+v6-v3+2v3-2v2-3+v6)/((2v3-2v2-3+v6)(v2-1))==(3v6-3v2-3)/(2v6-2v3-4+2v2-3v2+3+2v3-v6))=3(v6-v2-1)/(v6-v2-1)=3#2я понял запись так : v(7+4v3+v7+4v3)=v(7+v7+8v3)v(8+2v7-v8-2v7)=v(8-v8)