Первое действие в скобках - деление, потом в скобках вычитание. Потом за скобкой умножаем и выполняем вычитание. 1) 2 целых 2/3:1,2= 2 целых 2/3:1 целая 2/10= (переводим в обыкновенную дробь) 8/3:12/10= (вторая дробь переворачивается) (8*10)/(3*12)=80/36=(сокращаем на 4) 20/9=2 целых 2/9 2) 2 целых 2/9-2= 2/9 3) 2/9*6 целых 3/4=( переводим в обыкновенную дробь) 2/9*27/4=2*27/9*4= (сокращаем 2 и 4 на 2 - остается от 2 один, от 4 два; сокращаем 27 и 9 на 9, от 27 остается 3, от 9 остается 1)= 1*3/1*2=3/2=1 целая 1/2 4) 1 целая 1/2-5,5= (переводим из десятичной в смешанную дробь)= 1 целая 1/2-5 целых 5/10=(сокращаем дробь) 1 целая 1/2-5 целых 1/2= (переводим смешанные дроби в обыкновенные) 3/2-11/2= 3-11/2=-8/2=(сокращаем на два)=-4
Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
x(x-1) ≠ 0
x ≠ 0 або x ≠ 1
Відповідь: х є (-∞; 0)∪(0;1)∪(1;+∞)
(a+2)(a-3) ≠ 0
a+2 ≠ 0 або a-3 ≠ 0
a ≠ - 2 a ≠ 3
Відповідь: а є (-∞; -2)∪(-2;3)∪(3;+∞)