М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
svetiksemisvetik2004
svetiksemisvetik2004
10.08.2022 02:30 •  Алгебра

1)сравните с нулём: (знак "^" обозначает степень) а) (-2)^-3 б) -2^3 в) (-2)^-4 г) -2^4 2)запишите в виде степени с целым показателем,если a(не равно) нулю: а)a^3*a^4 б)a^4*a в)a^13: a^6 г)a^12: a д)(a^4)^6 е)(a^2)^5 ж)a^7*b^7 з)a^4*b^4

👇
Ответ:
borisenkkov
borisenkkov
10.08.2022
1)
a) <
б) <
в) >
г) >
2)
a) a^7
б) a^5
в) a^7
г) a^11
д)a^24
е)a^10
ж)ab^7
з)ab^4
4,7(70 оценок)
Открыть все ответы
Ответ:
Olga2907
Olga2907
10.08.2022
y''+3y'=9x
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о.  + уч.н.

Найдем уо.о. (общее однородное)
y''+3y'=0
Применим метод Эйлера
Пусть y=e^{kx}, тогда подставив в однородное уравнение, получаем характеристическое уравнение
k^2+3k=0
Корни которого k_1=-3;\,\,\,\, k_2=0
Тогда общее решение однородного уравнения будет
y_{o.o.}=C_1y_1+C_2y_2=C1e^{-3x}+C_2

Найдем теперь уч.н.(частное неоднородное)
f(x)=9x\cdot e^{0x} отсюда \alpha=0;\,\,\,\,\, P_n(x)=9x;\,\,\, n=1
где P_n(x) - многочлен степени х

Сравнивая \alpha с корнями характеристического уравнения  и, принимая во внимания что n=1 , частное решение будем искать в виде:
уч.н. = x e^{0x}(A+Bx)

Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
y'=A+2Bx\\ \\ y''=(A+2Bx)'=2B

Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х

2B+3(A+2Bx)=9x\\ 2B+3A+6Bx=9x\\ \\ \displaystyle\left \{ {{2B+3A=0} \atop {6B=9}} \right. \Rightarrow \left \{ {{A=-1} \atop {B= \frac{3}{2} }} \right.

Тогда частное решение неоднородного будет иметь вид

уч.н. = \dfrac{3x^2}{2}-x

Запишем общее решение исходного уравнения

Y_{O.H}= \dfrac{3x^2}{2}-x +C_1e^{-3x}+C_2 - ответ
4,5(22 оценок)
Ответ:
ahmadieva05
ahmadieva05
10.08.2022
1)На графике у тебя парабола нарисована. Чертишь прямую у = -1 и рассматриваешь ту часть графика, которая оказывается над этой прямой. Вот вся та часть и есть решение. Запиши интервал для х, который соответствует той части графика и это будет ответ.
ДА. Так как знак больше иои РАВНО, то концы интервала будут включены. (квадратные скобочки)
2)
3)Два неравенства называются равносильными, если множества их решений совпадают (в том числе, неравенства, не имеющие решений, считаются равносильными)
4)-
5)Если дискриминант меньше нуля, значит график функции не пересекает ось ОХ! ! В данном случае, парабола будет направлена ветками вверх, следовательно в этом неравенство нет решения.
Если бы 3x^2 - 8x + 14 > 0, то решением было бы x Є R, а здесь решения нет!!
( Рациональное неравенство – это неравенство с переменными, обе части которого есть рациональные выражения)
7)

Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.

Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).

В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.

4,4(37 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ