Дано: bn – геометрическая прогрессия;
b1 + b2 = 30, b2 + b3 = 20;
Найти: b1; b2; b3 - ?
Формула члена геометрической прогрессии: bn = b1 * q^(n – 1),
где b1 – первый член геометрической прогрессии, q – её знаменатель, n – количество членов прогрессии этой формулы выразим второй и третий члены заданной прогрессии:
b2 = b1 * q^(2 – 1) = b1 * q;
b3 = b1 * q^(3 – 1) = b1 * q^2.
Т.о. имеем:
b1 + b2 = 30; и b2 + b3 = 20;
b1 + b1 * q = 30; b1 * q + b1 * q^2 = 20;
b1 (1 + q) = 30; b1 (q + q^2) = 20;
b1 = 30 / (1 + q). b1 = 20 / (q + q^2).
Т.е. 30 / (1 + q) = 20 / (q + q^2);
30 * (q + q^2) = 20 * (1 + q);
30q + 30q^2 = 20 + 20q;
30q^2 + 10q – 20 = 0;
D = (10)^2 – 4 * 30 * (-20) = 2500; sqrt(D) = sqrt (2500) = 50;
q1 = (-10 + 50) / 60 = 2/3;
q2 = (-10 - 50) / 60 = -1.
Подставим оба полученных значений q выражение для нахождения b1:
b1 = 30 / (1 + 2/3) = 30 / (5/3) = 90/5 = 18;
b1 = 30 / (1 + (-1)) = 30 / 0 – смысла не имеет, следовательно, q = 2/3.
b2 = b1 * q = 18 * 2/3 = 12;
b3 = b1 * q^2 = 18 * 2/3^2 = 8.
ответ: b1 = 18; b2 = 12; b3 =8.
Объяснение:
1. Пусть х-количество 2-х местных байдарок,
тогда 12-х -количество 3-х местных байдарок.
В двухместных байдарках разместилось 2х человек,
а в трёхместных 3(12-х) человек.
По условию задачи всего было 29 человек.
Составляем уравнение:
2х+3(12-х)=29
2х+36-3х=29
-х=29-36
-х=-7
х=7- было 2-х местных байдарок
2.Запишите уравнение прямой, паралельной данной прямой и проходящей через данную точку А: 3х+4у=12, А (8;-8)
3х+4у=12
4у=12-3х
у=3-3/4 х
k=-3/4
у=kx+b
A(8;-8)
-8=-3/4*8+b
b=-8+12=4
y=-3/4x+4 -уравнение прямой, паралельной данной прямой и проходящей через данную точку А.
3.Запишите уравнение прямой, которая проходит через две данные точки: А (1;3), В (5;-4)
вектор АВ(5-1;-4-3)=(4;-7)
(х-1)/4 = (у-3)/-7
-7х+7=4у-12
7х+4у-19=0 - искомое уравнение прямой
Во втором примере плюс и минус меняются местами.