Биномиальное распределение стремится к нормальному при больших n
По условию
р = 0.9
соответственно
q = 1- p = 0.1
Математическое ожидание
М= np= 1000 * 0.9 = 900
Дисперсия
D= npq = 1000*0.9*0.1= 90
Сигма = √D= 3√10 = ~9.5
Мы рассматриваем интервал от центра распределения 900 до 940 - это больше чем четыре сигмы.
В этом случае в табличку нормального распределения можно даже не заглядывать, хвостик за четыремя сигмами очень малюсенький, пятый знак после запятой.
Половина всей выборки до 900 , половина после.
ответ
Вероятность равна ~0.5
Масса второго сплава составляет 30 кг
Объяснение:
Для удобства вычислений переведём проценты в десятичные дроби:
5%=5:100=0,05
14%=14:100=0,14
10%=10:100=0,1
Пусть масса первого сплава равна х кг,
тогда масса второго сплава равна (х+6) кг,
а масса третьего сплава равна х+х+6=2х+6 кг
Масса цинка в первом сплаве составляет 0,05х кг,
масса цинка во втором сплаве составляет 0,14(х+6) кг,
масса цинка в третьем сплаве составляет 0,1(2х+6) кг.
Т.к. третий сплав состоит из первого и второго, составляем уравнение:
0,05х+0,14(х+6)=0,1(2х+6)
0,05х+0,14х+0,84=0,2х+0,6
0,84-0,6=0,2х-0,05х-0,14х
0,24=0,01х
х=0,24:0,01
х=24 (кг) - масса первого сплава
х+6=24+6=30(кг) - масса второго сплава