Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с т.Пифагора.
Решение:
Так как Руслан ежедневно решает на одно и тоже количество задач больше по сравнению с предыдущим днем, то последовательность решенных задач является арифметической прогрессией. Поэтому можно записать, что первый член арифметической прогрессии равен 13 или a1=13. Последний член равен an.
Сумма прогрессии равна 420 или Sn = 420. Количество членов прогрессии равно количеству дней для решения n=12.
Запишем формулу для определения суммы арифметической прогрессии
Sn = (a1+an)n/2
Выразим из формулы an
an = 2Sn/n - a1
Подставим известные значения
an = 2*420/12 - 13 = 57
Поэтому в последний день Руслан решил 57 задач.
ответ: 57
an =a1+(n-1)d или d =(an-a1)/(n-1) =(57-13)/(12-1) =44/11=4
Запишем эту последовательность
13;17;21;25;29;33;37;41;45;49;53;57
Сумма этих чисел равна
13+17+21+25+29+33+37+41+45+49+53+57= 420