Даны функции y=(x-1)^2+1 и y=-(x-3)^2+5. Раскроем скобки и приравняем, чтобы определить абсциссы точек пересечения графиков этих функций: х² - 2х + 1 + 1 = -(х² - 6х + 9) + 5, х² - 2х + 1 + 1 = -х² +6х - 9 + 5, 2х² - 8х + 6 = 0 или, сократив на 2: х² - 4х + 3 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-4)^2-4*1*3=16-4*3=16-12=4;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√4-(-4))/(2*1)=(2-(-4))/2=(2+4)/2=6/2=3;x_2=(-√4-(-4))/(2*1)=(-2-(-4))/2=(-2+4)/2=2/2=1. Имеем 2 точки пересечения: х = 1 и х = 3. Площадь общей части двух графиков равна интегралу:
Даны функции y=(x-1)^2+1 и y=-(x-3)^2+5. Раскроем скобки и приравняем, чтобы определить абсциссы точек пересечения графиков этих функций: х² - 2х + 1 + 1 = -(х² - 6х + 9) + 5, х² - 2х + 1 + 1 = -х² +6х - 9 + 5, 2х² - 8х + 6 = 0 или, сократив на 2: х² - 4х + 3 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-4)^2-4*1*3=16-4*3=16-12=4;Дискриминант больше 0, уравнение имеет 2 корня: x_1=(√4-(-4))/(2*1)=(2-(-4))/2=(2+4)/2=6/2=3;x_2=(-√4-(-4))/(2*1)=(-2-(-4))/2=(-2+4)/2=2/2=1. Имеем 2 точки пересечения: х = 1 и х = 3. Площадь общей части двух графиков равна интегралу:
D=144 + 4*15*3 = 324 = 18^2
x1 = (12 - 18)/6 = -6/6 = -1
x2 = (12+18)/6 = 30/6 = 5
При x∈(-бесконечность; -1) - производная положительная
При x∈(-1;5) - производная отрицательная
При x∈(5; +бесконечность) - производная положительная
Значит x=-1 - минимум, x=5 - максимум