f(x)=e^6x-x^2+5
Функція буде зростати на відрізках, де її похідна має додатні значення.
Знаходимо похідну:
f'(x) = 6e^6x-2x ; ця функція неперервна.
Знайдемо точки екстремуму через похідну другого порядку:
f''(x) = 36e^6x-2
36e^6x-2 = 0
18e^6x = 1
6x = ln(1/18)
x = ln(1/18)/6
Дізнаємось знак похідної на точці екстремума:
6e^(6(ln(1/18)/6)) - 2(ln(1/18)/6) = 6e^(ln(1/18)) - (ln(1/18)/3) = 6*1/18 - (ln(1/18)/3) = 1/3 - (ln(1/18)/3) ; ln(1/18) має відємне значення, тому загальний вираз буде додатнім.
Розглянемо похідну на 2 довільних точках по обидві сторони від точки екстремума:
х=0
f'(x) = 6e^(6*0)-2*0 = 6е - значення додатнє
х=-10
f'(x) = 6e^(6*(-10))-2*(-10) = 6e^(-60)+20 = 6/e^60+20 - значення також додатнє
Отже, функція зростає на всій області визначення, крім точки ln(1/18)/6
U t s
по течению 18+х 5ч 5(18+х)
против течения 18-х 3ч 3(18-х)
Пусть скорость течения реки равно х км/ч, тогда по течению 18+х, а против 18-х.
5(18+х)-3(18-х)=48
90+5х-54+3х=48
8х+36=48
8х=48-36
8х=12
х=12/8
х=1.5 км/ч скорость течения реки.
ответ: 1,5 км/ч