Раз прямая является касательной, значит есть точка пересечения, поэтому приравниваем эти два уравнения 28x^2+bx+15=-5x+8 28x^2+(b+5)x+7=0 раз точка касания единственная, значит дескриминант должен равен нулю D=b^2+10b-759 =0 решаем получаем 2 корня b1=-33, b2=23 подставляем в уравнение графика y1=28x^2-33x+15 и y2=28x^2+23x+15
Теперь полученные уравнения касате и графиков опять приравниваем -5х+8=28x^2-33x+15. Корень равен 0.5, т.е абцисса точки касания больше 0
аналогично для второго случая -5х+8=28x^2+23x+15 Решаем, получаем корень -0.5. Это не удовлетворяет, раз абцисса меньше нуля.
Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.