Числа вида 4n, 4n+1 и 4n+3 представимы в виде разности квадратов: 4n=(n+1)²-(n-1)²; 4n+1=(2n+1)²-(2n)²; 4n+3=(2n+2)²-(2n+1)².
Числа вида 4n+2 не представимы в виде разности квадратов, т.к. иначе 4n+2=a²-b²=(a-b)(a+b). Если а и b имеют разную четность, то а-b и a+b - нечетные числа, и значит (a-b)(a+b) нечетно. Если а и b имеют одинаковую четность, то а-b и a+b - оба четные, и значит (a-b)(a+b) делится на 4. Но число 4n+2 - не является нечетным и не делится на 4. Значит, оно не может быть равно a²-b² ни при каких а и b.
Таким образом, все натуральные числа не представимые в виде разности квадратов имеют вид 4n+2, где n=0,1,2, Так как первое такое число (равное 2) будет при n=0, то трехтысячное число будет при n=2999, т.е. равно 4*2999+2=11998.
Решение: Обозначим зарплату мамы за (х) руб, папы за (у) руб, пенсию бабушки за (z) руб, месячный доход семьи за D (руб), тогда: х+у+z=D (1) Согласно условия задачи,если при повышении в следующем году зарплаты маме на 20%, месячный доход семьи увеличится на 6% или (х+20%*:100%)+у+z=D+6%*D:100% (х+0,2х)+у+z=D+0,06D 1,2x+y+z=1,06D (2) При повышении зарплаты папе на 20%, месячный доход увеличится на 10% или: х+(у+20%*у:100%)+z=D+10%*D:100% x+(y+0,2y)+z=D+0,1D x+1,2y+z=1,1D (3) При повышении пенсии бабушке на 20%, месячный доход увеличится на 3200 руб или: х+у+(z+20%*z:100%)=D+3200 x+y+(z+0,2z)=D+3200 x+y+1,2z=D+3200 (4) Из четвёртого уравнения вычтем первое уравнение: x+y+1,2z-x-y-z=D+3200-D 0,2z=3200 z=3200 : 0,2 z=16000 (руб-пенсия бабушки)
Подставим значение (z) равное 16000 в первое, второе и третье уравнения, получим: х+у+16000=D (1) 1,2х+у+16000=1,06D (2) x+1,2y+16000=1,1D (3) Из второго уравнения вычтем первое уравнение: 1,2х+у+16000-х-у-16000=1,06D-D 0,2x=0,06D x=0,06D : 0,2 х=0,3D Из третьего уравнения вычтем первое уравнение: х+1,2у+16000-х-у-16000=1,1D-D 0,2y=0,1D y=0,1D : 0,2 у=0,5D Подставим найденные значения (х) и (у) в первое уравнение: 0,3D+0,5D+16000=D 0,3D+0,5D-D=-16000 -0,2D=-16000 D=-16000 : -0,2 D=80000 (руб) -месячный доход семьи
ну насколько я поняла ваше задание:
Дано отрезок АБ = 9см АМ=2БМ
найти БМ
пусть длина БМ=х, а АМ=2х
х+2х=9
3х=9
х=3
а так как нам надо найти именно БМ ответ 3 см