Исходя из отношения сторон 2:19, пусть ширина будет равна 2х, а длина - 19х. Мы знаем, что площадь находится по формуле: S=a*b. Тогда мы можем составить уравнение, подставив наши переменные, 2х*19х=152 или 38х^2=152 (во второй степени)
Узнаём чему равен х.
38х^2=152 => х^2=4 => х=√4=2 (т.к. в данном случае не может быть отрицательного корня)
Теперь узнаём чему равны стороны прямоугольника.
Ширина=2х=2*2=4
Длина=19х=19*2=18
И теперь с формулы нахождения периметра Р=(a+b)*2 мы можем найти периметр.
Р=(18+4)*2=88
Как-то так.
Приклад:
Розв'язати систему рівнянь: {x−2y=3,5x+y=4.
1) З першого рівняння системи виражаємо змінну x через змінну y.
Отримуємо: x−2y=3,x=3+2y;
2) Підставимо отриманий вираз замість змінної x у друге рівняння системи:
5⋅x+y=4,5⋅(3+2y)+y=4;
3) Розв'яжемо утворене рівняння з однією змінною, знайдемо y:
5⋅(3+2y)+y=4,15+10y+y=4,10y+y=4−15,11y=−11,|:11y=−1¯¯¯¯¯¯¯¯¯¯¯.
4) Знайдемо відповідне значення змінної x, підставивши значення змінної y, у вираз знайдений на першому кроці:
x=3+2⋅y,x=3+2⋅(−1),x=3−2,x=1¯¯¯¯¯¯¯¯.
5) Відповідь: (1;−1) .
Объяснение:
это решить линейные уравнения без черчежей
Вычислить площадь фигуры, ограниченной линиями
y=e^x, y=e^-x, x=1
поскольку обе кривые пересекаются в точке х=0 у=1
и не обращаются в ноль то
площадь фигуры, ограниченной линиями y=e^x, y=e^-x, x=1
равна площади фигуры, ограниченной линиями y=e^x у=0 x=0 x=1
минус площадь фигуры, ограниченной линиями y=e^-x у=0 x=0 x=1
первая это интеграл от нуля до 1 от e^x
вторая это интеграл от нуля до 1 от e^-x
интеграл от e^-x = - e^-x
остается подставить значения и найти каждый интеграл а затем из первого вычесть второй