31, 29, 27 a1 = 31 d = a2 - a1 = 29 - 31 = -2 Прогрессия убывающая. Для того чтобы ответить на вопрос задачи (Сколько положительных членов имеет арифметическая прогрессия), найдем первый отрицательный член прогрессии. Его номер обозначим через m аm = a1 + (m - 1)d аm = 31 + (m - 1)*(-2) Т.к. этот член отрицательный, то аm < 0 => 31 + (m - 1)*(-2)< 0 31 - 2m + 2 < 0 - 2m + 33 < 0 - 2m < - 33 | : (-2) m > 16,5 Итак, номер первого отрицательного члена прогрессии > 16,5, т.е. 17. И он равен а17 = a1 + (17 - 1)d = 31 + (17 - 1)*(-2) = 31 - 32 = -1 Значит предыдущие 16 членов положительны или = 0. Причем нулю может быть равен только член с номером 16. Вычислим а16 : а16 = a17 - d = -1 - (-2) = -1 + 2 = 1 > 0
ответ: арифметическая прогрессия имеет 16 положительных членов.
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y). Решение: 1. Воспользуемся формулами разность синусов и сумма косинусов: Заметим, что оба равенства содержат один и тот же член: . Выразим его из обоих равенств: В получившихся равенствах левые части равны, значит, равны и правые части: . Преобразуем данное равенство: Теперь используем формулы понижения степени синуса и косинуса: Преобразуем данное равенство: n²(1-cos(x-y))=m²(1+cos(x-y)); n²-n²cos(x-y)=m²+m²cos(x-y); m²cos(x-y)+n²cos(x-y)=n²-m²; cos(x-y)(m²+n²)=n²-m²; Используя основное тригонометрическое тождество, выразим sin(x-y): ответ:
Рассуждаем следующим образом. Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю: Или: Тогда при возведении первой матрицы в квадрат получим матрицу: А при возведении второй матрицы в квадрат получим: А возведя в третью степень обе матрицы, получим нулевые матрицы. ответ: или
a1 = 31
d = a2 - a1 = 29 - 31 = -2
Прогрессия убывающая.
Для того чтобы ответить на вопрос задачи (Сколько положительных членов имеет арифметическая прогрессия), найдем первый отрицательный член прогрессии.
Его номер обозначим через m
аm = a1 + (m - 1)d
аm = 31 + (m - 1)*(-2)
Т.к. этот член отрицательный, то аm < 0 =>
31 + (m - 1)*(-2)< 0
31 - 2m + 2 < 0
- 2m + 33 < 0
- 2m < - 33 | : (-2)
m > 16,5
Итак, номер первого отрицательного члена прогрессии > 16,5, т.е. 17.
И он равен а17 = a1 + (17 - 1)d = 31 + (17 - 1)*(-2) = 31 - 32 = -1
Значит предыдущие 16 членов положительны или = 0. Причем нулю может быть равен только член с номером 16. Вычислим а16 :
а16 = a17 - d = -1 - (-2) = -1 + 2 = 1 > 0
ответ: арифметическая прогрессия имеет 16 положительных членов.