М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1ivel3
1ivel3
30.03.2022 17:32 •  Алгебра

Найти производную модуля числа x при x не равном нулю а также производную дробной части числа {x}, интеграл модуля и дробной части

👇
Ответ:
Nastionka6757
Nastionka6757
30.03.2022
y=|x|\\
y'=\frac{x}{|x|}\\

интеграл от нее , известно что равен 
 \int\limits { \frac{x^2}{2}*sgn(x)+C} , хотя по сути можно упрощение сделать. Это лишь формальности 

По формуле  
(x)=x-[x] , где [x] целая часть числа. 
 По свойству кусочных функций ,  сама дробная часть имеет период T=1 , это  видно из графика   . 
  И она очевидно разрывна , что уже говорит что у нее производная будет равна 
   {x}'=1 
 Интеграл можно  "раздробить"  ориентируясь по графику , можно заметить то что площадь есть сумма площадей прямоугольных треугольников , длинами катетов равными 1 и 1 . 
 Если брать общее число каких то площадей , то тут суммарно не разберешься , если же какой та определенный кусок есть .
к примеру  от  0  до "n" , то   площадь этих треугольников , равна   \frac{1*1}{2} , если же  перейти к примеру  то 
 \int\limits^n_0 \frac{[x]}{2}^2+\frac{(x)}{2}^2 +C
4,6(9 оценок)
Открыть все ответы
Ответ:
bulavka8
bulavka8
30.03.2022
Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.  
4,7(54 оценок)
Ответ:
79869106698
79869106698
30.03.2022
При разрезании верёвочки длины 1 на   n \geq 2   равных частей
у кваждой будет длина   \frac{1}{n} \ .

Для того, чтобы кусочки верёвочки длины 2 после разрезания были бы такой же длины, т.е.   \frac{1}{n} \ ,   нужно разрезать верёвочку длины 2 на   2 : \frac{1}{n} = 2 \cdot \frac{n}{1} = 2 n \   частей.

Значит всего будет   n + 2n = 3n \   частей.

Проще говоря, на сколько бы частей не разрезали эти верёвочки, общее число всех кусочков непременно окажется кратным трём, т.е. должно делиться на три. По признаку делимости на три, и сумма цифр такого числа обязательно должна делиться на три.

Если предлагаются варианты ответов: 2014, 2015, 2016, 2017 или 2018, то единственным подходящим вариантом будет 2016, поскольку:

2 + 0 + 1 + 4 = 7 \ ,   не делится на три.

2 + 0 + 1 + 5 = 8 \ ,   не делится на три.

2 + 0 + 1 + 6 = 9 \ ,   делится на три!

2 + 0 + 1 + 7 = 10 \ ,   не делится на три.

2 + 0 + 1 + 8 = 11 \ ,   не делится на три.

О т в е т :  (В)  2016 .
4,4(28 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ