М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
коко60
коко60
20.06.2022 14:16 •  Алгебра

Найти все значения b, при которых уравнение bx^2+x+6b^2-1=0 имеет корни, причем только целые

👇
Ответ:
SergeyHodos
SergeyHodos
20.06.2022
Квадратное уравнение ах² + вх + с = 0 имеет корни, когда дискриминант равен или больше нуля.
У нас: а = в, в = 1, с = 6в²-1
D = 1 - 4*b*(6b²-1) = 1 - 24b³ - 4b.
Первое решение - D = 0    b = 1/2.
Тогда уравнение примет вид 0,5х²+х + (6*1/4 - 1) =
= 0,5х²+х + 0,5 = 0     D = 0    x₁ = x₂ = -1 (это целое число).
Чтобы иметь другие корни, и притом целые, то из формулы нахождения корней квадратного уравнения получим выражение:
+-√(1 - 24b³ - 4b) = 2кв+1, где к - коэффициент кратности.
4,4(23 оценок)
Ответ:
maks7388
maks7388
20.06.2022
B=1
4,7(1 оценок)
Открыть все ответы
Ответ:
VERONIKA75498768783
VERONIKA75498768783
20.06.2022
Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
4,7(85 оценок)
Ответ:
Qwerty20020505
Qwerty20020505
20.06.2022
\sqrt{3x-2} > x-2
ОДЗ
Так как арифметический квадратный корень не может быть отрицатеьным, то x-2 \geq 0
x \geq 2
Теперь мы имеем право левую и правую части возвести в квадрат
3x - 2 > x^2 - 4x - 4
x^2 - 7x - 2 < 0
Так как мы не можем неравенство приравнять к нулю введем функцию
y = x^2 - 7x - 2
D = b^2 - 4ac= 49 - 4*1*(-2)=57
x1=(7 + \sqrt{57} )/2
x2=(7 - \sqrt{57} )/2
Отбор корней
Чертим числовую прямую, отмечаем корни (x1 и x2), берем любое значение из получившихся 3-х промежутков. Там, где получившееся значение меньше 0, значит берем этот промежуток как предварительный ответ.
Производим отбор корней по ОДЗ
ответ: промежуток x∈ [2;(7+√57)/2).
Не могу начертить числовую прямую для более точного ответа.
4,7(37 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ