Объяснение:
1. Преобразуйте в многочлен:
1) (a + 4)²=a²+8a+16 2) (3у - с)²=9y²-6cy+c²
3) (2a - 5)( 2a + 5) =4a²-25 4) (x² + y)( x² - y)=x^4-y²
2. Разложите на множители:
1) 0,36 – с²=(0,6-c)(0,6+c) 2) 5a² + 10a=5a(a+2)
3) 16x² – 49=(4x)²-7²=(4x-7)(4x+7)
3) Упростите выражение: (m - 1)(т + 1) - (т - 3)=mt-2t+m+2
4. Выполните действия:
a) 3(1 + 2xy)( 1 - 2xy) =3(1-4x²y²)=3-12x²y² б) (x²-y)=(x-√y)(a+√y)
5. Решите уравнение: (x - 2)(x + 2) - x(x + 5) = - 8
X²-4-x²-5x=-8
-5x=-4
X=4/5=0,8
ответ: 12√39 (ед. площади)
Объяснение:
Прямоугольный треугольник с катетами 3 и 4 - египетский, его гипотенуза 5 ( проверьте по т.Пифагора).
Проекция ВС наклонной В1С перпендикулярна СА. По т. о 3-х перпендикулярах В1С⊥СА. Треугольник В1СА - прямоугольный с углом В1АС=60°. В1С=АС•tg60°=4√3. Т.к. призма прямая, боковые ребра перпендикулярны основаниям, поэтому треугольник В1ВС прямоугольный. По т. Пифагора В1В=√(B1C²-BC²)=√[(4√3)²-3²]=√39
Боковое ребро прямой призмы является её высотой, а её боковые грани - прямоугольники.
Площадь боковой поверхности призмы находят умножением её высоты на периметр основания.
S(бок)=В1В•(АВ+ВС+АС)=√39•12=12√39 (ед. площади)