Основное свойство линейных функций: приращение функции пропорционально приращению аргумента. То есть функция является обобщением прямой пропорциональности.График линейной функции является прямой линией, с чем и связано ее название. Это касается вещественной функции одной вещественной переменной.
Свойства:
K является тангенсом угла, который образует прямая с положительным направлением оси абсцисс.
При ,К > 0 прямая образует острый угол с осью абсцисс.
При ,K < 0 прямая образует тупой угол с осью абсцисс.
При ,K = 0 прямая параллельна оси абсцисс.
b является показателем ординаты точки пересечения прямой с осью ординат.
При ,b = 0 прямая проходит через начало координат.
(K- коэффициент, b - некоторое число)
1) sin^2α+ sin^2β + cos(α + β)*cos(α - β) = sin^2α + sin^2β + cos^2α - sin^2β = sin^2α + cos^2α = 1.
2) cos^2(45°-α)-cos^2(60°+α)- cos75° * sin(75°-2α) =
(cos (45°-α)-cos (60°+α))*((cos (45°-α)+cos (60°+α))-cos(90-15)°*sin(90-(15+2α) =
[-2*sin( 105/2)*sin((-15-2α)/2)]*[2*cos( 105/2)*cos((15+2α)/2)]-sin15*cos(15+2α )=
[ 2*sin( 105/2)*sin(( 15+2α)/2)]*[2*cos( 105/2)*cos((15+2α)/2)]-sin15*cos(15+2α )=
[ 2*sin( 105/2)*cos( 105/2)]*[2*sin(( 15+2α)/2)*cos((15+2α)/2)]-sin15*cos(15+2α) =
sin(2*(105/2))*sin(15+2α)-sin15*cos(15+2α)=sin105*sin(15+2α)-sin15*cos(15+2α )=
sin(90+15)*sin(15+2α)-sin15*cos(15+2α)= cos15*sin(15+2α)-sin15*cos(15+2α)=
sin((15+2α)-15)=sin2α